Critical Excipient Attributes Relevant to Solid Dosage Formulation Manufacturing

  • Naseem Ahmad CharooEmail author
Review Article



The objective of this article is to review the critical material attributes of pharmaceutical excipients employed in solid dosage manufacturing and link them to critical quality attributes (CQAs). Material attributes can have a profound impact on CQAs of product.


The importance of particle size, particle morphology, density, moisture content, and polymorphism to product CQAs is discussed.


Physical functional attributes of excipients are determined by a complex interaction of the particle size, shape, density, surface area, and particle arrangement in the crystal lattice and consequently, modification of existing excipients focuses primarily on these parameters. These factors govern the process capability of excipients, including ease in powder handling. Therefore, the success or failure of the tableting process will depend on how these parameters interact.


The micromeritic properties of pharmaceutical powders are critical to powder cohesiveness, flow properties and segregation, tablet hardness, disintegration, and dissolution.


Critical material attributes Functional attributes Critical quality attributes Powder characterization Segregation Compactability Flow properties 


Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.


  1. 1.
  2. 2.
    Rojas J, Buckner I, Kumar V. Co-processed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012;38(10):1159–70.CrossRefGoogle Scholar
  3. 3.
    Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharmaceut Sci. 2005;8(1):76–93.Google Scholar
  4. 4.
    Adkin DA, Davis SS, Sparrow RA, Huckle PD, Wilding IR. The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 1995;84:1405–9.CrossRefGoogle Scholar
  5. 5.
    Chen ML, Straughn AB, Sadrieh N, Meyer M, Faustino PJ, Ciavarella AB. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24:73–80.CrossRefGoogle Scholar
  6. 6.
    Sebhatu T, Alderborn G. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Eur J Pharm Sci. 1999;8:235–42.CrossRefGoogle Scholar
  7. 7.
    Freeman R. The flowability of powders-an empirical approach. London: Int Conf Powder & Bulk Solids Handl, IMechE HQ; 2000.Google Scholar
  8. 8.
    Sun Z, Ya N, Adams RC, Fang FS. Particle size specifications for solid oral dosage forms: a regulatory perspective. Am Pharm Rev 2010. Available from Accessed 5th May 2014.
  9. 9.
    Fayed ME, Otten L. Handbook of powder science & technology, 2nd. London: Chapman & Hall; 1997.CrossRefGoogle Scholar
  10. 10.
    Hlinak AJ, Kuriyan K, Morris KR, Reklaitis GW, Basu PK. Understanding critical material properties for solid dosage form design. J Pharm Inn. 2006;1:12–7.CrossRefGoogle Scholar
  11. 11.
    Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2006;24(2):203–27.CrossRefGoogle Scholar
  12. 12.
    Standish N. Studies of size segregation in filling and emptying a hopper. Powder Tech. 1985;45:43–56.CrossRefGoogle Scholar
  13. 13.
    Samadani A, Pradhan A, Kudrolli A. Size segregation of granular matter in silo discharges. Phy Rev E. 1999;60(6):7203–9.CrossRefGoogle Scholar
  14. 14.
    Seville JPK, Tüzün U, Clift R. Processing of particulate solids. Powder Tech Ser IInd Edition. London: Chapman & Hall, Boundary Row; 1997. p. 1–52.CrossRefGoogle Scholar
  15. 15.
    Juliano P, Muhunthan B, Gustavo VB. Flow and shear descriptors of preconsolidated food powders. J Food Eng. 2006;72:157–66.CrossRefGoogle Scholar
  16. 16.
    Abdullah EC, Geldart D. The use of bulk density measurements as flowability indicators. Powder Tech. 1999;102:151–65.CrossRefGoogle Scholar
  17. 17.
    Andrews G, Jones D, Zhai H, Diak OB, Walker G. Effects of grinding in pharmaceutical tablet production, p1165-1190. In: Gad SC, editor. Pharmaceutical manufacturing handbook. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2008. p. 1165–90.CrossRefGoogle Scholar
  18. 18.
    Osorio JG, Muzzio FJ. Effects of powder flow properties on capsule filling weight uniformity. Drug Dev Ind Pharm. 2013;39(9):1464–75.CrossRefGoogle Scholar
  19. 19.
    Liu LX, Marziano I, Bentham AC, Litster JD, White ET, Howes T. Effect of particle properties on the flowability of ibuprofen powders. Int J Pharm. 2008;362(1–2):109–17.CrossRefGoogle Scholar
  20. 20.
    Fichtner F, Rasmuson A, Alderborn G. Particle size distribution and evolution in tablet structure during and after compaction. Int J Pharm. 2005;292(1–2):211–25.CrossRefGoogle Scholar
  21. 21.
    Prescott JK, Hossfeld RJ. Maintaining product uniformity and uninterrupted flow to direct-compression tableting process. Pharm Tech. 1994;18(6):99–114.Google Scholar
  22. 22.
    Wagner CM, Pein M, Breitkreutz J. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades. Int J Pharm. 2013;453(2):416–22.CrossRefGoogle Scholar
  23. 23.
    Yang J, Sliva A, Banerjee A, Dave RN, Pfeffer R. Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 2005;158:21–33.CrossRefGoogle Scholar
  24. 24.
    Sun C, Grant DJ. Effects of initial particle size on the tableting properties of L-lysine monohydrochloride dihydrate powder. Int J Pharm. 2001;215(1–2):221–8.CrossRefGoogle Scholar
  25. 25.
    Zuurmann K, Riepma KA, Bolhuis GK, Vromans H, Lerk CF. The relationship between bulk density and compactibility of lactose granulations. Int J Pharm. 1994;102:1–9.CrossRefGoogle Scholar
  26. 26.
    Johansson B, Nicklasson F, Alderborn G. Effect of pellet size on degree of deformation and densification during compression and on compactability of microcrystalline cellulose pellets. Int J Pharm. 1998;163(1–2):35–48.CrossRefGoogle Scholar
  27. 27.
    Bangudu AB, Akande OF, Adewuyi VT. The effect of interacting variables on the compaction performance of paracetamol/millet starch tablets. Pharm World J. 1991;8:87–90.Google Scholar
  28. 28.
    Rehula M. The effect of granule size on dissolution of drugs from tablets. Folia Pharmacol. 1985;8:101–7.Google Scholar
  29. 29.
    Almaya A, Aburub A. Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants. AAPS PharmSciTech. 2008;9(2):414–8.CrossRefGoogle Scholar
  30. 30.
    Wouters IMF, Geldart D. Characterizing semi-cohesive powders using angle of repose. Part Part Syst Charact. 1996;13:254–9.CrossRefGoogle Scholar
  31. 31.
    Lahdenpää E, Niskanan M, Yliruusi J. Study of some essential physical characteristics of three Avicel PH grades using a mixture design. Eur J Pharm Biopharm. 1996;42(3):177–82.Google Scholar
  32. 32.
    Larhrib H, Martin GP, Prime D, Marriott C. Characterisation and deposition studies of engineered lactose crystals with potential for use as a carrier for aerosolized salbutamol sulfate from dry powder inhalers. Eur J Pharm Sci. 2003;19(4):211–21.CrossRefGoogle Scholar
  33. 33.
    Chan LCY, Page NW. Particle fractal and load effects on internal friction in powders. Powder Tech. 1997;90:259–66.CrossRefGoogle Scholar
  34. 34.
    Tang P, Puri VM. Methods for minimizing segregation: a review. Particle Sci Tech. 2004;22:321–37.CrossRefGoogle Scholar
  35. 35.
    Popov KI, Pavlovic MG, Pavlovic LJ, Ivanovic ER, Krstic SB, Zou RP, et al. Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Tech. 1996;88:71–9.CrossRefGoogle Scholar
  36. 36.
    Mullarney MP, Hancock BC, Carlson GT, Ladipo DD, Langdon BA. The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners used in chewable tablets. Int J Pharm. 2003;257(1–2):227–36.CrossRefGoogle Scholar
  37. 37.
    Wong LW, Pilpel N. The effect of particle shape on mechanical properties of powders. Int J Pharm. 1990;59:145–54.CrossRefGoogle Scholar
  38. 38.
    Jensen RP, Bosscher PJ, Plesha ME, Edil TB. DEM simulation of granular media structure interface: effects of surface roughness and particle shape. Int J Numer Anal Meth Geomech. 1999;23:531–47.CrossRefGoogle Scholar
  39. 39.
    Barrett PJ. The shape of rock particles, a critical review. Sedimentology. 1980;27:291–303.CrossRefGoogle Scholar
  40. 40.
    ISO, ISO 9276-6:2008 (E), Representation of results of particle size analysis–part 6: descriptive and quantitative representation of particle shape and morphology. 2008.Google Scholar
  41. 41.
    Olson E. Particle shape factors and their use in image analysis–part 1: theory. J GXP Compliance. 2011;15(3):85–96.Google Scholar
  42. 42.
    Kaerger JS, Edge S, Price R. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose. Eur J Pharm Sci. 2004;22:173–9.CrossRefGoogle Scholar
  43. 43.
    Cain J. An alternative technique for determining ANSI/CEMA standard 550 flowability ratings for granular materials. Powder Hand Proc. 2002;14(3):218–20.Google Scholar
  44. 44.
    Shinohara K, Golman B. Density segregation of a binary solids mixture during batch operations in a two-dimensional hopper. Adv Powder Tech. 2003;14(3):333–47.CrossRefGoogle Scholar
  45. 45.
    Shi Q, Sun G, Hou M, Lu K. Density-driven segregation in vertically vibrated binary granular mixtures. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;75(6 Pt 1):061302.CrossRefGoogle Scholar
  46. 46.
    Shinohara K, Miyata S. Mechanism of density segregation of particles in filling vessels. Ind Eng Chem Process Des Dev. 1984;23(3):423–8.CrossRefGoogle Scholar
  47. 47.
    Kuentz M, Leuenberger H. A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. Eur J Pharm Biopharm. 2000;49:151–9.CrossRefGoogle Scholar
  48. 48.
    Ram´ırez N, Melgoza LM, Kuentz M, Sandoval H, Caraballo I. Comparison of different mathematical models for the tensile strength–relative density profiles of binary tablets. Eur J Pharm Sci. 2004;22:19–23.CrossRefGoogle Scholar
  49. 49.
    Wu CY, Best SM, Bentham AC, Hancock BC, Bonfield W. A simple predictive model for the tensile strength of binary tablets. Eur J Pharm Sci. 2005;25:331–6.CrossRefGoogle Scholar
  50. 50.
    Buckton G. Solid state properties. In: Aulton M, Taylor K. Aulton’s Pharmaceutics, 4th edition. The design and manufacturing of medicines. Churchill, Livingstone: Elsevier 2013; p. 126–37.Google Scholar
  51. 51.
    O’Sullivan. Cellulose: the structure slowly unravels. Cellulose. 1997;4(3):173–207.CrossRefGoogle Scholar
  52. 52.
    Reus-Medina M, Lanz M, Kumar V, Leuenberger H. Comparative evaluation of the powder properties and compression behaviour of a new cellulose-based direct compression excipient and Avicel PH-102. J Pharm Pharmacol. 2004;56(8):951–6.CrossRefGoogle Scholar
  53. 53.
    Kumar V. de la Luz Reus-Medina M, Yang D. Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid. Int J Pharm. 2002;235(1–2):129–40.CrossRefGoogle Scholar
  54. 54.
    Desai A. Rectal, vaginal and uretheral delivery. In: Desai A, Lee M, editors. Gibaldi’s drug delivery systems in pharmaceutical care. Wisconsin Avenue, Bethesda: American Society of health System Pharmacists inc; 2007. p. 95–102.Google Scholar
  55. 55.
    Amale N, Luc A, Marleen V, Geert H, Andreas R. Polymorphism of sorbitol. J Crystal Growth. 2009;311(15):3863–70.CrossRefGoogle Scholar
  56. 56.
    Lerk CF. Consolidation and compaction of lactose. Drug Dev Ind Pharm. 1993;19:2359–98.CrossRefGoogle Scholar
  57. 57.
    Bolhuis G, Zuurman K. Tableting properties of experimental and commercially available lactose granulations for direct compression. Drug Dev Ind Pharm. 1995;21:2057–71.CrossRefGoogle Scholar
  58. 58.
    Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stottner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89:457–68.CrossRefGoogle Scholar
  59. 59.
    Yu L, Milton N, Groleau NG, Mishra DS, Vansickle RS. Existence of a mannitol hydrate during freeze-drying and practical implications. J Pharm Sci. 1999;88:196–8.CrossRefGoogle Scholar
  60. 60.
    Liao X, Krishnamurthy R, Suryanarayanan R. Influence of processing conditions on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2007;24(2):370–6.CrossRefGoogle Scholar
  61. 61.
    Yoshinari T, Forbes RT, York P, Kawashima Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int J Pharm. 2002;247(1–2):69–77.CrossRefGoogle Scholar
  62. 62.
    Patent No. 230013. A magnesium or calcium stearate composition and a method for preparing the same, 2009. Assigned to Mallinckrodt Inc., St. Louis, USA. Available at: Accessed on 5th May 2018.
  63. 63.
    Okoye P, Wu SH, Dave RH. To evaluate the effect of various magnesium stearate polymorphs using powder rheology and thermal analysis. Drug Dev Ind Pharm. 2012;38(12):1470–8.CrossRefGoogle Scholar
  64. 64.
    Sarko A, Wu H. The crystal structures of A-, B- and C- polymorphs of amylose and starch. Starch – Stärke. 1978;30 (3:73–8.CrossRefGoogle Scholar
  65. 65.
    Buleon A, Le Bail P, Colonna P, Bizot H. Phase and polymorphic transitions of starches at low and intermediate water contents. In: Reid DS, editor. The Properties of Water in Foods ISOPOW, vol. 6. Boston: Springer; 1998. p. 160–78.Google Scholar
  66. 66.
    Imberty A, Chanzy H, Pe’rez S, Bule’on A, Tran V. The double-helical nature of the crystalline part of A-starch. J Mol Biol. 1988;201:365–78.CrossRefGoogle Scholar
  67. 67.
    Imberty A, Pe’rez S. A revisit to the three-dimensional structure of B-amylose. Biopolymers. 1988;27:1215–21.CrossRefGoogle Scholar
  68. 68.
    Imberty A, Bule’on A, Tran V, Pe’rez S. Recent advances in knowledge of starch structure. Starch-Starke. 1991;43:375–84.CrossRefGoogle Scholar
  69. 69.
    Jane J, Kasemsuwan T, Chen JF. Phosphorous in rice and other starches. Cereal Foods World. 1996;41:827–32.Google Scholar
  70. 70.
    Zobel HF. Molecules to granules: a comprehensive starch review. Starch-Starke. 1996;40:44–50.CrossRefGoogle Scholar
  71. 71.
    Gidley MJ, Bulpin PV. Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch. Carbohydr Polym. 1987;161:291–300.CrossRefGoogle Scholar
  72. 72.
    Starch 1500®. Partially pregelatinized maize starch. Technical bulletin. Available at: Accessed 2 May 2014.
  73. 73.
    Lycatab® C - Partially pregelatinized starch for capsule filling, direct compression and wet granulation. Available at: Accessed 2 May 2018.
  74. 74.
    The binding performance of DFE Pharma Starch. Available at: Accessed 2 May 2018.
  75. 75.
    Lycatab® DSH. Excipient for wet granulation. Available at: Accessed 2 May 2018.
  76. 76.
    Primojel®. Application notes.DFE pharma. Available at: Accessed 2 May 2014.
  77. 77.
    Explotab®. Sodium starch glycolate. Available at: Accessed 2 May 2014.
  78. 78.
    Avicel® for solid dosage forms. Available at: Accessed 2 May 2014.
  79. 79.
    Vivapur® Emocel®. Microcrystalline cellulose. Available at: Accessed 2 May 2014.
  80. 80.
    Innophos. Calcium Phosphate excipients. Available at: Accessed 2 May 2014.
  81. 81.
    The unique position in lactose. Available at: Accessed 2 May 2014.
  82. 82.
  83. 83.
  84. 84.
    Technical brochure, Flowlac®. 2014. Available at: Accessed 2 May 2014.
  85. 85.
    Technical brochure, Tablettose®. 2014. Available at: Accessed 2 May 2014.
  86. 86.
    Pearlitol®. Mannitol for pharmaceutical applications. Available at: Accessed 2 May 2014.
  87. 87.
    Pearlitol® 200 SD. The ultimate mannitol for DC tablets. Available at: Accessed 2 May 2014.
  88. 88.
  89. 89.
    Manogem® mannitol. Available at: Accessed 2 May 2014.
  90. 90.
    Plasdone™ povidones. product review. Available at: Accessed 2 May 2014.
  91. 91.
    Volker Buhler. Kollidon®, polyvinyl pyrrolidone excipients for the pharmaceutical Inustry. 9th revised edition. BASF, the chemical company. Available at: Accessed 2 May 2014.
  92. 92.
    Insoluble Kollidon® grades. Technical information. 2011.BASF the Chemcial Company. Available at: Accessed 2 May 2014.
  93. 93.
    Polyplasdone ™ crospovidone superdisintegrants. Product overview. Available at: Accessed 2 May 2014.
  94. 94.
    Hydrophilic fumed silica AEROSIL® fumed silica—product groups. Available at: Accessed 2 May 2014.
  95. 95.
    Hydrophobic fumed silica AEROSIL® fumed silica—product groups. Available at: . Accessed 2 May 2014.
  96. 96.
    Klucel, hydroxypropyl cellulose, physical and chemical properties. Available at: Accessed 2 May 2014.
  97. 97.
    L-HPC, Low-substituted hydroxypropylcellulose, Shin-Etsu Chemicals Co Ltd Available at: Accessed 2 May 2014.
  98. 98.
    Applications for Methocel®. Available at: Accessed 2 May 2014.
  99. 99.
    ETHOCEL™ One of the Few Water-Insoluble Polymers Approved for Global Pharmaceutical Applications. 2013. Ethocel ™ overview. Available at: filepath=dowwolff/pdfs/noreg/198-02292.pdf&fromPage=GetDoc. Accessed 2 May 2014.
  100. 100.
    ETHOCEL™ Premium Ethylcellulose Polymers Superior Product, Superior Performance. Ethocel comparative information. 2014. Available at: Accessed 2 May 2014.
  101. 101.
    Eudragit®, Acrylic polymers for solid dosage forms. Available at: . Accessed 2 May 2014.
  102. 102.
    IPEC excipient composition guide 2009. The International Pharmaceutical Excipients Council. Available from Accessed 1st July 2014.
  103. 103.
    Remedies D, Aufmuth KP. Tableting with coprocessed lactose-cellulose excipients. Manuf Chem. 1992;63:21–4.Google Scholar
  104. 104.
    Arida AI, Al-Tabakha MM. Cellactose® a co-processed excipient: a comparison study. Pharm Dev Technol. 2008;13:165–75.CrossRefGoogle Scholar
  105. 105.
    Starlac®. Product information. Meggle Excipients and Technology. Available from: Accessed 1st July 2014.
  106. 106.
    Schmidt PC, Rubensdörfer CJW. Evaluation of Ludipress as a “multipurpose excipient” for direct compression: part I: powder characteristics and tableting properties. Drug Dev Ind Pharm. 1994;20:2899–925.CrossRefGoogle Scholar
  107. 107.
    Mužíková J, Nováková P. A study of the properties of compacts from silicified microcrystalline celluloses. Drug Dev Indu Pharm. 2007;33(7):775–81.CrossRefGoogle Scholar
  108. 108.
    Lahdenpaa E, Antikainen O, Yliruusi J. Direct compression with silicified and non-silicified microcrystalline cellulose: study of some properties of powders and tablets. STP Pharm Sci. 2001;11:129–35.Google Scholar
  109. 109.
    Auguello M, Ruszkay T, Reier G. Inventors; Co-processed microcrystalline cellulose and calcium carbonate. 1998; EP 0942950.Google Scholar
  110. 110.
    Gupta P, Nachaegari SK, Bansal AK. Improved excipient functionality by coprocessing. In: Excipient development for pharmaceutical, biotechnology and drug delivery systems. New York: Informa Healthcare USA Inc; 2006. p. 109–27.CrossRefGoogle Scholar
  111. 111.
    Michrafy A, Ringenbacher D, Tchoreloff P. Modelling the compaction behaviour of powders: application to pharmaceutical powders. Powder Technol. 2002;127:257–66.CrossRefGoogle Scholar
  112. 112.
    Jacob S, Shirwaikar A, Joseph A, Srinivasan K. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian J Pharm Sci. 2007;69:633–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zeino Pharma FZ LLCDubaiUnited Arab Emirates

Personalised recommendations