Journal of Pharmaceutical Innovation

, Volume 14, Issue 1, pp 1–14 | Cite as

Part 3: Enhanced Approaches to the Development of the Control Strategy and its Implementation in the Manufacturing Process Description

  • Matt E. PopkinEmail author
  • Batool Ahmed Omer
  • Kevin D. Seibert
  • Carla V. Luciani
  • Sushil Srivastava
  • Lindsay Hobson
  • John V. Lepore
Review Article


A series of case histories from IQ consortium member companies will be presented to exemplify how the application of the ICH Q11 vision for enhanced Quality by Design (QbD) development of the active pharmaceutical ingredient (API) can lead to differentiated outcomes for elements such as the API supply chain and control strategy, and how changes to such outcomes are managed over the lifecycle. A series of articles will address “flexibility” and look to provide recommendations for the further development of the ICH Q11 vision. The focus of this work will address flexibility associated with the “Enhanced Approaches to the Development of the Control Strategy and Its Implementation in the Manufacturing Process Description.”


ICH Control strategy Manufacturing process description S2.2 Quality by design (QbD) Process Methods Models CMC Design of experiment (DoE) Kinetics Design space 



The authors acknowledge the following for their input and support: Tim Watson, Asher Lower, Tim Curran, Nick Thompson, Steve Tymonko, Jeffrey Kallemeyn, Tim Curran, Adam Looker, John R Donaubauer, and Nathan Ide.


Case Study 1 & 2

  1. 1.
    ICH Q11 Q9 Guidelines.Google Scholar

Case Study 2

  1. 2.
    Seibert K, Sethuraman S, Mitchell J, Griffiths K, McGarvey B. The use of routine process capability for the determination of process parameter criticality in small-molecule API synthesis: J. Pharm Innov. 2008;3:105–12.CrossRefGoogle Scholar
  2. 3.
    Mitchell J, Abhinava K, Griffiths K, McGarvey B, Seibert K, Sethuraman S. Unit operations characterization using historical manufacturing performance. Ind Eng Chem Res. 2008;47:6612–21.CrossRefGoogle Scholar

Case Study 3

  1. 4.
    Am Ende D, Clifford P, DeAntonis D, Santamaria C, Brenek S. Preparation of grignard reactants: ftir and calorimetric investigation for safe scale up. Org. Proc. Res. Dev. 1999;3:319–29.CrossRefGoogle Scholar
  2. 5.
    Caygill G, Zanfir M, Gavriilidis A. Scalable reactor design for pharmaceuticals and fine chemicals production. 1: potential scale-up obstacles. Org. Proc. Res. Dev. 2006;10:539–52.CrossRefGoogle Scholar
  3. 6.
    Figueroa I, Vaidyaraman S, Viswanath S. Model-based scale-up and design space determination for a batch reactive distillation with a dean-stark trap. Org. Proc. Res. Dev. 2013;17:1300–10.CrossRefGoogle Scholar
  4. 7.
    Gonzalez-Bobes F, Kopp N, Li L, Deerberg J, Sharma P, Leung S, et al. Scale-up of azide chemistry: a case study. Org. Proc. Res. Dev. 2012;16:2051–7.CrossRefGoogle Scholar
  5. 8.
    Hoekstra L, Vonk P, Hulshof L. Modeling the scale-up of contact drying processes. Org. Proc. Res. Dev. 2006;10(3):409–16.CrossRefGoogle Scholar
  6. 9.
    Tangler A, Szabados E. Overcoming problems at elaboration and scale-up of liquid-phase Pd/C mediated catalytic hydrogenations in pharmaceutical production. Org. Process Res. Dev. 2016;20:1246–51.CrossRefGoogle Scholar
  7. 10.
    Anderson N. Practical use of continuous processing in developing and scaling up laboratory processes. Org. Proc. Res. Dev. 2001;5:613–21.CrossRefGoogle Scholar
  8. 11.
    Johnson M, May S, Calvin J, Remacle J, Stout J, Diseroad W, et al. Development and scale-up of a continuous, high-pressure, asymmetric hydrogenation reaction, workup, and isolation. Org. Proc. Res. Dev. 2012;16:1017–38.CrossRefGoogle Scholar
  9. 12.
    Polster C, Cole K, Burcham C, Campbell B, Frederick A, Hansen M, et al. Pilot-scale continuous production of LY2888721: amide formation and reactive crystallization. Org Proc Res Dev. 2014;18:1295–309.CrossRefGoogle Scholar
  10. 13.
    Zaborenko N, Lynder R, Braden T, Campbell B, Hansen M, Johnson M. Development of pilot-scale continuous production of an LY2886721 starting material by packed-bed hydrogenolysis. Org. Proc. Res. Dev. 2015;19:1231–43.CrossRefGoogle Scholar
  11. 14.
    Food and Drug Administration Code of Federal Regulations, Tittle 21, Volume 4 (21CFR210.3).Google Scholar
  12. 15.
    Thomson N, Singer R, Seibert K, Luciani C, Srivastava S, Kiesman W, et al. Case studies in development of drug substance control strategy. Org. Proc. Res. Dev. 2015;19:935–48.CrossRefGoogle Scholar
  13. 16.
    Rathore A, Velayudhan A. Guidelines for optimization and scale-up in preparative chromatography. BioPharm International. 2003;16:34–42.Google Scholar
  14. 17.
    García-Muñoz S, Luciani C, Vaidyaraman S, Seibert K. Definition of design spaces using mechanistic models and geometric projections of probability maps. Org. Proc. Res. Dev. 2015;19:1012–23.CrossRefGoogle Scholar

Case Study 5

  1. 18.
    The development of a control strategy for a final intermediate towards the preparation of a drug substance is described in Org. Process Res.Dev.2016, 20, 1781–1791 (published on October 7, 2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Matt E. Popkin
    • 1
    Email author
  • Batool Ahmed Omer
    • 1
  • Kevin D. Seibert
    • 2
  • Carla V. Luciani
    • 2
  • Sushil Srivastava
    • 3
  • Lindsay Hobson
    • 3
  • John V. Lepore
    • 4
  1. 1.Product Development and SupplyGlaxoSmithKline LtdStevenageUK
  2. 2.Small Molecule Design and DevelopmentEli Lilly and Co., Lilly Technology CenterIndianapolisUSA
  3. 3.Chemical DevelopmentBristol-Myers Squibb CompanyNew BrunswickUSA
  4. 4.Chemical Process Development and CommercializationMerckRahwayUSA

Personalised recommendations