Space-time code selection via particle swarm optimization

  • 51 Accesses


In this paper, the space-time code selection technique for multiple-inputs single-output systems is optimized using particle swarm optimization. We considered both variable-rate and constant-rate strategies. For a variable-rate technique, we address the problems of minimizing the bit-error rate for a given throughput objective and maximizing the throughput for a given bit-error rate objective. For a constant-rate technique, we address the problem of minimizing the bit-error rate. Results show that it is possible to find BER and throughput values close to those required when using a variable-rate technique with optimized threshold levels. For the constant-rate technique, we obtain considerable energy to noise gains when using optimized threshold levels.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Gourdin E, Medhi D, Pattavina A (2018) Ann Telecommun 73(1):1.

  2. 2.

    Zhang P, Yang X, Chen J, Huang Y (2019) China Communications 16:69

  3. 3.

    Cheng X, Zhang R, Yang L (2018) IEEE Internet Things J 6:188

  4. 4.

    Sternad M, Svensson T, Ottosson T, Ahlen A, Svensson A, Brunstrom A (2007) Proc IEEE 95(12):2432.

  5. 5.

    Drajic D, Ivanis P (2013) In: 2013 11th international conference on telecommunication in modern satellite, cable and broadcasting services (TELSIKS), vol 01, pp 209–216.

  6. 6.

    Bedeer E, Dobre O, Ahmed M, Baddour K (2014) IEEE Trans Wirel Commun 13(4):2339.

  7. 7.

    Dong Z, Fan P, Panayirci E, Lei X (2014) IEEE Trans Veh Technol PP(99):1.

  8. 8.

    Karray MK, Jovanovic M, Błaszczyszyn B (2015) Ann Telecommun 70(11):479.

  9. 9.

    Alamouti S (1998) IEEE J Sel Areas Commun 16(8):1451

  10. 10.

    Tarokh V, Jafarkhani H, Calderbank A (1999) IEEE J Sel Areas Commun 17:451

  11. 11.

    Molisch AF, Win MZ, Winters JH (2003) IEEE Trans Signal Process 51(11):2729

  12. 12.

    Thoen S, der Perre LV, Gyselinckx B, Engels M (2001) IEEE Trans Commun 49:5

  13. 13.

    Chen Z, Yuan J, Vucetic B (2005) IEEE Trans Veh Technol 54(4):1312

  14. 14.

    Mavares D, Torres RP (2008) IEEE Trans Veh Technol 57(1):620

  15. 15.

    Mavares D, Torres RP (2009) Elsevier Computer Communications 32(3):477

  16. 16.

    Mavares D, Velasquez R, Candotti K, Huerta M (2015) In: Asia-Pacific conference on computer aided system engineering, pp 63–67

  17. 17.

    Shin H, Lee JH (2002) In: GLOBECOM 2002 - IEEE global telecommunications conference, vol 21, pp 1206–1210

  18. 18.

    Mavares D, Torres RP, Uzcátegui RA (2011) In: The sixth international conference on digital telecommunications (ICDT 2011)

  19. 19.

    Mavares D (2011) Estimación de Canal y Transmisión Adaptativa en Sistemas MISO (Editorial Académica Española, Heinrich-Böcking-Str., Saarbrücken)

  20. 20.

    Kennedy J, Eberhart RC (1995) In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  21. 21.

    Clerc M, Kennedy J (2002) Trans Evol Comp 6(1), 58,

Download references

Author information

Correspondence to Dimas Mavares T..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mavares T., D., Oropeza, M. & Velásquez, R. Space-time code selection via particle swarm optimization. Ann. Telecommun. 75, 59–66 (2020).

Download citation


  • Space-time code selection
  • Transmit diversity
  • MIMO
  • Particle swarm optimization
  • PSO