Advertisement

Annals of Telecommunications

, Volume 74, Issue 1–2, pp 113–121 | Cite as

Children exposure to femtocell in indoor environments estimated by sparse low-rank tensor approximations

  • Emma ChiaramelloEmail author
  • Marta Parazzini
  • Serena Fiocchi
  • Marta Bonato
  • Paolo Ravazzani
  • Joe Wiart
Article
  • 63 Downloads

Abstract

The exposure of an 8-year-old child to a femtocell operating at 2600 MHz, both (child and source) freely located in random positions in an indoor environment, was assessed. In order to develop surrogate models of the exposure, stochastic dosimetry based on sparse low-rank tensor approximation method (sparse LRA) was used. The surrogate models were used for fastly estimating the specific absorption rate (SAR) in all the possible positions of femtocell and child. Results showed that, for all the possible positions in the room, the exposure values were significantly below the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines for general public and that the probability of reaching SAR values higher than 1% of the ICNIRP guidelines value was lower than 0.006. The variation of the distance between femtocell and child influenced greatly the exposure, resulting in quartile coefficient of dispersion values always higher than 48%.

Keywords

Stochastic dosimetry RF-EMF exposure 4G LTE femtocell Sparse low-rank tensor approximation 

Notes

Funding information

This research is supported by The French National Research Program for Environmental and Occupational Health of Anses (EST-2016-2RF-04) Project AMPERE: Advanced MaPpingof residential ExposuRE to Rf-Emf sources.

References

  1. 1.
    Chandrasekhar V, Andrews JG, Gatherer A (2008) Femtocell networks: a survey. IEEE Commun Mag 46(9):59–67CrossRefGoogle Scholar
  2. 2.
    World Health Organization (WHO) (2005) “Base stations and wireless networks: exposures and health consequences.,” in Proceedings of the international workshop on base stations and wireless networks: exposures and health consequencesGoogle Scholar
  3. 3.
    Van Deventer E, Van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32(5):417–421CrossRefGoogle Scholar
  4. 4.
    Aerts S, Plets D, Verloock L, Martens L, Joseph W (2014) Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios. Radiat Prot Dosim 162(3):236–243CrossRefGoogle Scholar
  5. 5.
    Zarikoff B, Malone D (2013) A comparison of RF exposure in macro- and femtocells. Health Phys 105(1):39–48CrossRefGoogle Scholar
  6. 6.
    Boursianis A, Vanias P, Samaras T (2012) Measurements for assessing the exposure from 3G femtocells. Radiat Prot Dosim 150(2):158–167CrossRefGoogle Scholar
  7. 7.
    Chen HY, Wen SH (2016) Evaluation of E-field distribution and human exposure for a LTE femtocell in an office. Appl Comput Electromagn Soc J 31(4):455–467Google Scholar
  8. 8.
    P. Gajšek, B. Kos, and B. Valič (2009) “Energy absorption in adult male and child due to femtocell,” in Annual meeting of the bioelectromagnetics society (BEMS) and European bioelectromagnetics associationGoogle Scholar
  9. 9.
    Liorni I, Parazzini M, Varsier N, Hadjem A, Ravazzani P, Wiart J (2016) Exposure assessment of one-year-old child to 3G tablet in uplink mode and to 3G femtocell in downlink mode using polynomial chaos decomposition. Phys Med Biol 61(8):3237–3257CrossRefGoogle Scholar
  10. 10.
    Kersaudy P, Sudret B, Varsier N, Picon O, Wiart J (2015) A new surrogate modeling technique combining Kriging and polynomial chaos expansions–application to uncertainty analysis in computational dosimetry. J Comput Phys 286:103–117MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wiart J (2016) Radio-frequency human exposure assessment: from deterministic to stochastic methods. John Wiley & Sons, ISTEGoogle Scholar
  12. 12.
    Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J (2017) Assessment of fetal exposure to 4G LTE tablet in realistic scenarios: effect of position , gestational age and frequency. IEEE J Electromagn RF Microwaves Med Biol 1:26–33CrossRefGoogle Scholar
  13. 13.
    Chiaramello E, Fiocchi S, Ravazzani P, Parazzini M (2017) Stochastic dosimetry for the assessment of children exposure to uniform 50 Hz magnetic field with uncertain orientation. Biomed Res Int 2017:1–14CrossRefGoogle Scholar
  14. 14.
    Fiocchi S, Chiaramello E, Parazzini M, Ravazzani P (2018) Influence of dielectric tissue properties on foetal exposure to extremely low frequency magnetic fields at 50 Hz using stochastic dosimetry. PLoS One 13(2):e0192131CrossRefGoogle Scholar
  15. 15.
    Konakli K, Sudret B (2016) Reliability analysis of high-dimensional models using low-rank tensor approximations. Probabilistic Eng Mech 46:18–36CrossRefzbMATHGoogle Scholar
  16. 16.
    Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Konakli K, Sudret B (2016) Polynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansions. J Comput Phys 321:1144–1169MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J (2018) Stochastic dosimetry based on low rank tensor approximations for the assessment of children exposure to WLAN source. IEEE J Electromagn RF Microwaves Med Biol 2(2):1–7CrossRefGoogle Scholar
  19. 19.
    Chevreuil M, Lebrun R, Nouy A, Rai P (2015) A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA J Uncertain Quantif 3(1):897–921MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Efron B, Hastie T, Johnstone I, Tibshirani R, Ishwaran H, Knight K, Loubes JM, Massart P, Madigan D, Ridgeway G, Rosset S, Zhu JI, Stine RA, Turlach BA, Weisberg S, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sudret B (2007) Uncertainty propagation and sensitivity analysis in mechanical models–contributions to structural reliability and stochastic spectral methods. Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France, Université Blaise Pascal, Clermont-Ferrand, FranceGoogle Scholar
  22. 22.
    Wiart J, Hadjem A, Wong MF, Bloch I (2008) Analysis of RF exposure in the head tissues of children and adults. Phys Med Biol 53:3681–3695CrossRefGoogle Scholar
  23. 23.
    Christ A, Gosselin MC, Christopoulou M, Kühn S, Kuster N (2010) Age dependent tissue-specific exposure of cell phone users. Phys Med Biol 55:1767–1783CrossRefGoogle Scholar
  24. 24.
    Wiart J, Hadjem A, Varsier N, Conil E (2011) Numerical dosimetry dedicated to children RF exposure. Prog Biophys Mol Biol 107(3):421–427CrossRefGoogle Scholar
  25. 25.
    International Commission on Non-Ionizing Radiation Protection (1998) ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys 74:494–522Google Scholar
  26. 26.
    Gosselin M-C, Neufeld E, Moser H, Huber E, Farcito S, Gerber L, Jedensjö M, Hilber I, Di Gennaro F, Lloyd B, Cherubini E, Szczerba D, Kainz W, Kuster N (2014) Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol 59(18):5287–5303CrossRefGoogle Scholar
  27. 27.
    Blatman G (2009) Adaptive sparse polynomial chaos expansions foruncertainty propagation and sensitivity analysis. In: Université Blaise Pascal, Clermont-FerrandGoogle Scholar
  28. 28.
    Hansen JE (1988) Spherical near-field antenna measurements. Peter Pelegrinos, London, United KingdomCrossRefGoogle Scholar
  29. 29.
    Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues. 1. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefGoogle Scholar
  30. 30.
    Pinto Y and Wiart J (2017) Statistical analysis and surrogate modeling of indoor exposure induced from a WLAN Source, no. 2, pp. 806–810Google Scholar
  31. 31.
    Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Konakli K and Sudret B (2015), “Uncertainty quantification in high-dimensional spaces with low rank tensor approximations,” 1st Int Conf Uncertain Quantif Comput Sci Eng, no May, pp. 1–12Google Scholar
  33. 33.
    Fiocchi S, Markakis IA, Ravazzani P, Samaras T (2013) SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models. Bioelectromagnetics 34(6):443–452CrossRefGoogle Scholar
  34. 34.
    Joseph W, Vermeeren G, Verloock L, Heredia MM, Martens L (2008) Characterization of personal RF electromagnetic field exposure and actual absorption for the general public. Health Phys 95(3):317–330CrossRefGoogle Scholar
  35. 35.
    Lauer O, Frei P, Gosselin MC, Joseph W, Röösli M, Fröhlich J (2013) Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case. Bioelectromagnetics 34(5):366–374CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, CNRMilanItaly
  2. 2.Télécom ParisTechLTCI University Paris SaclayParisFrance

Personalised recommendations