Advertisement

Annals of Telecommunications

, Volume 74, Issue 1–2, pp 79–91 | Cite as

Experimental analysis of individual EMF exposure for GSM/UMTS/WLAN user devices

  • Milica PopovićEmail author
  • Mladen Koprivica
  • Jelena Milinković
  • Aleksandar Nešković
Article
  • 41 Downloads

Abstract

Individual exposure to electromagnetic field (EMF) originating from a user device when using different services over WLAN (Wireless Local Area Network), GSM (Global System for Mobile communications), and UMTS (Universal Mobile Telecommunications Service) technologies in different radio conditions is analyzed. The most common types of traffic were chosen (voice, Skype, web browsing, download, upload, video, audio, TV) and tested in areas of good, medium, and bad radio conditions, per wireless technology. Exposure is evaluated using triggered network reports and external measurements performed in a live network, and also using predetermined simulation results. The analysis shows strong dependence of individual EMF exposure on wireless technology, radio conditions, and service used. For all technologies and services, exposure increased with deterioration of radio conditions, except for file upload over UMTS where in bad radio conditions exposure decreased due to impact of higher layer protocols. GSM technology generated highest exposure in all radio conditions and for all services, except file upload service in good radio conditions where WLAN generated higher exposure. File upload service generated highest exposure for all technologies and radio conditions, except for GSM in good radio conditions where video streaming and voice were ahead.

Keywords

Uplink exposure Duty factor Actual SAR WLAN GSM UMTS 

Notes

Acknowledgements

The research presented in this paper was undertaken in the context of the project LEXNET (Low-EMF eXposure future NETworks).

Funding information

The project has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 318273. For further information, please visit www.lexnet-project.eu.

References

  1. 1.
    Freudenstein F, Wiedemann PM, Varsier N (2015) Exposure knowledge and risk perception of RF EMF. Front Public Health 2(289).  https://doi.org/10.3389/fpubh.2014.00289.
  2. 2.
    Freudenstein, F., Wiedemann, P.M., Pejanovic-Djurisic, M., Koprivica, M., Neskovic A (2014) Intuitive exposure and risk perception of RF EMF: case studies Serbia and Montenegro. Proceedings of 22nd telecommunications forum - TELFOR 2014, Belgrade, IEEE 978-1-4799-6190-0, pp 1–4Google Scholar
  3. 3.
    Libération (2017) Le téléphone portable sera interdit dans les écoles et collèges à partir de la rentrée 2018. http://www.liberation.fr/france/2017/12/10/le-telephone-portable-sera-interdit-dans-les-ecoles-et-colleges-a-partir-de-la-rentree-2018_1615697. Accessed 7 Feb 2018
  4. 4.
    California Department of Public Health (2017) CDPH issues guidelines on how to reduce exposure to radio frequency energy from cell phones. https://www.cdph.ca.gov/Programs/OPA/Pages/NR17-086.aspx. Accessed 7 Feb 2018
  5. 5.
    Flurry Analytics Blog (2017) U.S. consumers time-spent on mobile crosses 5 hours a day. http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobile-crosses-5. Accessed 7 Feb 2018
  6. 6.
    Alanko T, Hietanen M, von Nandelstadh P (2008) Occupational exposure to RF fields from base station antennas on rooftops. Ann Telecommun 63:125–132.  https://doi.org/10.1007/s12243-007-0001-6 CrossRefGoogle Scholar
  7. 7.
    Tesanovic M, Conil E, De Domenico A, Aguero R, Freudenstein F, Correia L, Bories S, Martens L, Wiedemann P, Wiart J (2014) The LEXNET Project: wireless networks and EMF: paving the way for low-EMF networks of the future. IEEE Veh Technol Mag 9(2):20–28.  https://doi.org/10.1109/MVT.2014.2312272 CrossRefGoogle Scholar
  8. 8.
    Varsier V, Plets D, Corre Y, Vermeeren G, Joseph W, Aerts S, Martens L, Wiart J (2015) A novel method to assess the human population exposure induced by a wireless telecommunication network. Bioelectromagnetics 36(6):451–463.  https://doi.org/10.1002/bem.21928. CrossRefGoogle Scholar
  9. 9.
    Huang Y, Varsier N, Niksic S, Kočan E, Pejanović-Djurišić M, Popović M, Koprivica M, Nešković A, Milinković J, Gati A, Person C, Wiart J (2016) Comparison of average global exposure of population induced by a macro 3G network in different geographical areas in France and Serbia. Bioelectromagnetics 37(6):382–390.  https://doi.org/10.1002/bem.21990 CrossRefGoogle Scholar
  10. 10.
    Plets D, Joseph W, Aerts S, Vanhecke K, Vermeeren G, Martens L (2014) Prediction and comparison of downlink electric-field and uplink localized SAR values for realistic indoor wireless planning. Radiat Prot Dosim 162(4):487–498.  https://doi.org/10.1093/rpd/ncu019 CrossRefGoogle Scholar
  11. 11.
    Hedendahl LK, Carlberg M, Koppel T, Hardell L (2017) Measurements of radiofrequency radiation with a body-borne exposimeter in Swedish schools with Wi-Fi. Front Public Health 5:279.  https://doi.org/10.3389/fpubh.2017.00279 CrossRefGoogle Scholar
  12. 12.
    International Commission for Non Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494–522Google Scholar
  13. 13.
    Samsung (2018) SAR information. http://www.samsung.com/sar/sarMain.do. Accessed 7 Feb 2018
  14. 14.
    Federal Communications Commission (2018) Specific absorption rate (SAR) for cell phones: what it means for you. https://www.fcc.gov/consumers/guides/specific-absorption-rate-sar-cell-phones-what-it-means-you. Accessed 7 Feb 2018
  15. 15.
    International Electrotechnical Commission (2010) International standard ​IEC 62209-2:2010. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - human models, instrumentation, and procedures - Part 2: procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). ISBN 978-2-88910-642-4.Google Scholar
  16. 16.
    Roser K, Schoeni A, Bürgi A, Röösli M (2015) Development of an RF-EMF exposure surrogate for epidemiologic research. Int J Environ Res Public Health 12(5):5634–5656.  https://doi.org/10.3390/ijerph120505634 CrossRefGoogle Scholar
  17. 17.
    Lauer O, Frei P, Gosselin M, Joseph W, Röösli M, Fröhlich J (2013) Combining near- and farfield exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case. Bioelectromagnetics 34(5):366–374.  https://doi.org/10.1002/bem.21782 CrossRefGoogle Scholar
  18. 18.
    Aerts S, Plets D, Verloock L, Joseph W, Martens L (2014) Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios. Radiat Prot Dosim 162(3):236–243.  https://doi.org/10.1093/rpd/nct272 CrossRefGoogle Scholar
  19. 19.
    Wilén J, Sandström M, Hansson Mild K (2003) Subjective symptoms among mobile phone users—a consequence of absorption of radiofrequency fields? Bioelectromagnetics 24(3):152–159.  https://doi.org/10.1002/bem.10101 CrossRefGoogle Scholar
  20. 20.
    Jovanovic D, Bragard G, Picard D, Chauvin S (2015) Mobile telephones: a comparison of radiated power between 3G VoIP calls and 3G VoCS calls. J Expo Sci Environ Epidemiol 25(1):80–83.  https://doi.org/10.1038/jes.2014.74 CrossRefGoogle Scholar
  21. 21.
    Joshi P, Agrawal M, Thors B, Colombi D, Kumar A, Törnevik C (2015) Power level distributions of radio base station equipment and user devices in a 3G mobile communication network in India and the impact on assessments of realistic RF EMF exposure. IEEE Access 3:1051–1059.  https://doi.org/10.1109/ACCESS.2015.2453056 CrossRefGoogle Scholar
  22. 22.
    Paljanos A, Miclaus S, Bechet P, Munteanu C (2016) Assessment of mobile phone user exposure to UMTS and LTE signals: comparative near-field radiated power levels for various data and voice application services. J Electromagnet Wave 30(9):1101–1115.  https://doi.org/10.1080/09205071.2016.1167634
  23. 23.
    Sârbu A, Bechet P, Miclaus S (2017) Mobile phone user exposure assessment to UMTS and LTE signals at mobile data turn on by applying an original method. International conference knowledge-based organization 23(3):114–119.  https://doi.org/10.1515/kbo-2017-0164
  24. 24.
    Popović M, Koprivica M, Nikšić S, Milinković J, Nešković A (2014) Methodology for the comparison of cellular technologies and services with respect to EMF exposure. Telecommunications Forum Telfor (TELFOR), 22nd, pp 13–16.  https://doi.org/10.1109/TELFOR.2014.7034347
  25. 25.
    Vermeeren G, Thielens A, Aerts S, Joseph W, Martens L, Oliveira C, Mackowiak M, Correia LM, Pejanovic-Djurisic M, Veljovic Z, Neskovic A, Koprivica M, Gati A, Varsier N, Hadjem A, Wiart J, Conil E (2014) Deliverable D2.1: current metrics for EMF exposure evaluation. EU FP7 Project LEXNET (GA no. 318273)Google Scholar
  26. 26.
    Koprivica M, Slavković V, Popović M, Milinković J, Nešković A (2015) Experimental analysis of duty factor for WLAN user devices. Telecommunications forum Telfor (TELFOR), 23rd edn.pp 145–148.  https://doi.org/10.1109/TELFOR.2015.7377435
  27. 27.
    Varsier N, Huang Y, Krayni A, Hadjem A, Wiart J, Vermeeren G, Plets D, Joseph W, Martens L, Oliveira C, Sebastião D, Ferreira M, Cardoso F, Correia L, Koprivica M, Popović M, Kocan E, Pejanovic-Djurisic M (2015) Deliverable D2.8: global wireless exposure metric definition. EU FP7 Project LEXNET (GA No. 318273)Google Scholar
  28. 28.
    Ding N, Wagner D, Chen X, Pathak A, Charlie Hu Y, Rice A (2013) Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. SIGMETRICS Perform Eval Rev 41(1):29–40.  https://doi.org/10.1145/2494232.2466586

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Technical DivisionTelekom Srbija a.d.BelgradeSerbia
  3. 3.Radiocommunications Laboratory, Telecommunications DepartmentSchool of Electrical Engineering, University of BelgradeBelgradeSerbia
  4. 4.Legal Affairs DepartmentTelekom Srbija a.d.BelgradeSerbia

Personalised recommendations