Advertisement

Annals of Telecommunications

, Volume 73, Issue 11–12, pp 787–802 | Cite as

Metric anticipation to manage mobility in mobile mesh and ad hoc wireless networks

  • Sabrine Naimi
  • Anthony Busson
  • Véronique Vèque
  • Ridha Bouallegue
Article
  • 40 Downloads

Abstract

In mobile ad hoc networks (MANETs), node mobility management is performed by the routing protocol. It may use metrics to reflect link state/quality. But, the delay between measures of the link quality and its integration in the route computation is very detrimental to the mobility management. Consequently, routing protocols may use lossy links for a few seconds leading to a significant performance deterioration. In this paper, we propose a new routing metric technique calculation which aims at anticipating link quality. Basically, the idea is to predict metric values a few seconds in advance, in order to compensate the delay involved by the link quality measurement and their dissemination by the routing protocol. Our technique is based on measurements of signal strength and is integrated in two classical routing metrics: ETX (expected transmission count) and ETT (expected transmission time). Validations are performed through both simulations and a testbed experimentation with OLSR as routing protocol. NS-3 simulations show that our metric may lead to a perfect mobility management with a packet delivery ratio of 100%. Experiments on a testbed prove the feasibility of our approach and show that this technique reduces the packet error rate by a factor of 3 in an indoor environment compared to the classical metrics calculation.

Keywords

MANET ETX Metric OLSR Mobility Anticipation Testbed 

References

  1. 1.
    Siva Ram Murthy C, Manoj BS (2004) Ad hoc wireless networks: architectures and protocols, portable documents. Pearson EducationGoogle Scholar
  2. 2.
    Boukerche A, Turgut B, Aydin N, Ahmad MZ, Bölöni L, Turgut D (2011) Routing protocols in ad hoc networks: a survey. Comput Netw 55(13):3032–3080CrossRefGoogle Scholar
  3. 3.
    Lenders V, Wagner J, Heimlicher S, May M, Plattner B (2008) An empirical study of the impact of mobility on link failures in an 802.11 ad hoc network. IEEE Wirel Commun 15(6):16–21CrossRefGoogle Scholar
  4. 4.
    Alasmary Waleed, Zhuang Weihua (2012) Mobility impact in ieee 802.11 p infrastructureless vehicular networks. Ad Hoc Netw 10(2):222–230CrossRefGoogle Scholar
  5. 5.
    Husain A, Raw RS, Kumar B, Doegar A (2011) Performance comparison of different routing protocols in vehicular network environments. In: Wyld DC, Wozniak M, Chaki N, Meghanathan N, Nagamalai D (eds) Advances in computing and information technology. Springer, Berlin, pp 427–436CrossRefGoogle Scholar
  6. 6.
    Gite P, Sharma M (2012) Performance evaluation of ad-hoc network routing protocols using ns2 simulation. ACEEE Int J Netw Secur 3(1):6Google Scholar
  7. 7.
    Bai F, Sadagopan N, Helmy A (2003) Important: a framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In: INFOCOM (2003), vol 2, pp 825–835Google Scholar
  8. 8.
    Naimi S, Busson A, Vèque V, Bouallegue R, Slama LBH (2014) Mobility management in ad hoc networks using routing metrics. In: 2014 International conference on communications and networking (ComNet). Hammamet, Tunisia, pp 1–6Google Scholar
  9. 9.
    Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC3626Google Scholar
  10. 10.
    Perkins C, Belding-Royer E, Das S (2003) Ad hoc on-demand distance vector (AODV) routing RFC3561Google Scholar
  11. 11.
    Ali HM, Naimi AM, Busson A, Vèque V (2007) An efficient link management algorithm for high mobility mesh networks. In: MobiWac ’07, pp 42–49Google Scholar
  12. 12.
    Ali HM, Naimi AM, Busson A, Vèque V (2009) Signal strength based link sensing for mobile ad-hoc networks. Telecommun Syst 42(3-4):201–212CrossRefGoogle Scholar
  13. 13.
    Parissidis G, Karaliopoulos M, Baumann R, Spyropoulos T, Plattner B (2009) Routing metrics for wireless mesh networks. Guide Wireless Mesh Netw, 199–230Google Scholar
  14. 14.
    Rondinone M, Ansari J, Riihijärvi J, Mähönen P (2008) Designing a reliable and stable link quality metric for wireless sensor networks. In: Proceedings of the workshop on real-world wireless sensor networks, REALWSN ’08. ACM, pp 6–10Google Scholar
  15. 15.
    Houaidia C, van den Bossche A, Idoudi H, Val T, Saïdane LA (2013) Link availability aware routing metric for wireless mesh networks. In: AICCSA. IEEE Computer Society, pp 1–4Google Scholar
  16. 16.
    Naimi S, Busson A, Vèque V, Slama LBH, Bouallegue R (2014) Anticipation of etx metric to manage mobility in ad hoc wireless networks. In: Guo S, Lloret J, Manzoni P, Ruehrup S (eds) Ad-hoc, mobile, and wireless networks. Springer International Publishing, Cham, pp 29–42Google Scholar
  17. 17.
    De Couto DSJ, Aguayo D, Bicket J, Morris R (2005) A high-throughput path metric for multi-hop wireless routing. Wirel Netw 11(4):419–434CrossRefGoogle Scholar
  18. 18.
    Esposito PM, Elias M, Campista M, Moraes IM, Henrique L, Costa MK, Duarte OCMB, Rubinstein MG (2008) Implementing the expected transmission time metric for OLSR wireless mesh networks. In: 1st IFIP Wireless days WD ’08Google Scholar
  19. 19.
    Qin L, Kunz T (2006) Mobility metrics to enable adaptive routing in manet. In: Wireless and mobile computing, networking and communications (WiMob’2006), pp 1–8Google Scholar
  20. 20.
    Sadagopan N, Bai F, Krishnamachari B, Helmy A (2003) Paths: analysis of path duration statistics and their impact on reactive manet routing protocols. In: Proceedings of MobiHoc ’03. ACM, pp 245–256Google Scholar
  21. 21.
    Ashraf U, Abdellatif S, Juanole G (2008) An interference and link-quality aware routing metric for wireless mesh networks. In: IEEE Vehicular technology conference. VTC 2008-Fall., pp 1–5Google Scholar
  22. 22.
    Draves R, Padhye J, Zill B (2004) Routing in multi-radio, multi-hop wireless mesh networks. In: ACM MobiCom ’04. ACM, pp 114–128Google Scholar
  23. 23.
    Borges VCM, Pereira D, Curado M, Monteiro E (2009) Routing metric for interference and channel diversity in multi-radio wireless mesh networks. In: Ad-Hoc, mobile and wireless networks. Springer, pp 55–68Google Scholar
  24. 24.
    Youssef M, Ibrahim M, Abdelatif M, Chen L, Vasilakos AV (2014) Routing metrics of cognitive radio networks: a survey. IEEE Commun Surv Tutor 16(1):92–109. FirstCrossRefGoogle Scholar
  25. 25.
    Campista MEM, Esposito PM, Moraes IM, Costa LHMK, Duarte OCMB, Passos DG, de Albuquerque CVN, Saade DCM, Rubinstein MG (2008) Routing metrics and protocols for wireless mesh networks. IEEE Netw 22(1):6–12CrossRefGoogle Scholar
  26. 26.
    Gerharz M, de Waal C, Frank M, Martini P (2002) Link stability in mobile wireless ad hoc networks. In: 27th Annual IEEE conference on local computer networks. LCN 2002., pp 30–39Google Scholar
  27. 27.
    Bui N, Cesana M, Hosseini SA, Liao Q, Malanchini I, Widmer J (2017) A survey of anticipatory mobile networking context-based classification, prediction methodologies, and optimization techniques. IEEE Commun Surv Tutor 19(3):1790–1821CrossRefGoogle Scholar
  28. 28.
    Gavalas C, Konstantopoulos D, Pantziou G (2010) Mobility prediction in mobile ad-hoc networks. In: Next generation mobile networks and ubiquitous computing, IGI Global, pp 226–240Google Scholar
  29. 29.
    Ghouti L, Sheltami TR, Alutaibi KS (2013) Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Comput Sci 19:305–312CrossRefGoogle Scholar
  30. 30.
    Li X, Mitton N, Simplot-Ryl D (2011) Mobility prediction based neighborhood discovery in mobile ad hoc networks. In: Networking, pp 147–159Google Scholar
  31. 31.
    Suraj R, Tapaswi S, Yousef S, Pattanaik KK, Cole M (2016) Mobility prediction in mobile ad hoc networks using a lightweight genetic algorithm. Wirel Netw 22(6):1797–1806CrossRefGoogle Scholar
  32. 32.
    Ali SS, Kamalrulnizam AB, Kayhan ZG, Gonzalez AJ (2011) Mobility and signal strength- aware handover decision in mobile IPv6 based wireless LAN. In: Proceeding of the international multiconference of engineers and computer scientists, IMECS’2011, Hong KongGoogle Scholar
  33. 33.
    Su W, Lee SJ, Gerla M (2000) Mobility prediction in wireless networks. In: MILCOM 2000. 21st Century military communications conference proceedings, vol 1, pp 491–495Google Scholar
  34. 34.
    Su William, Lee S-J, Gerla M (2001) Mobility prediction and routing in ad hoc wireless networks. Int J Netw Manag 11(1):3–30CrossRefGoogle Scholar
  35. 35.
    Capka J, Boutaba R (2004) Mobility prediction in wireless networks using neural networks. In: Vicente J, Hutchison D (eds) Management of multimedia networks and services, volume 3271 of lecture notes in computer science. Springer, Berlin, pp 320–333CrossRefGoogle Scholar
  36. 36.
    Wang Z, Xu Y, Li L, Tian H, Cui S (2018) Handover control in wireless systems via asynchronous multi-user deep reinforcement learning. arXiv:1801:02077
  37. 37.
    Mousavi SM, Rabiee HR, Moshref M, Dabirmoghaddam A (2007) Model based adaptive mobility prediction in mobile ad-hoc networks. In: International conference on wireless communications, networking and mobile computing. WiCom 2007., pp 1713–1716Google Scholar
  38. 38.
    Duel-Hallen A, Hu S, Hallen S (2000) Long range prediction of fading signals Enabling adaptive transmission for mobile radio channels. IEEE Signal Process Mag 17:62–75CrossRefGoogle Scholar
  39. 39.
    Long X, Sikdar B (2008) A real-time algorithm for long range signal strength prediction in wireless networks. In: IEEE Wireless communications and networking conference. WCNC’08., pp 1120–1125Google Scholar
  40. 40.
    Clausen T, Dearlove C, Jacquet P, Herberg U (2014) The optimized link state routing protocol version 2, RFC7181 aprGoogle Scholar
  41. 41.
    Erceg V, Greenstein LJ, Tjandra SY, Parkoff SR, Gupta A, Kulic B, Julius AA, Bianchi R (1999) An empirically based path loss model for wireless channels in suburban environments. IEEE J Select Areas Commun 17(7):1205–1211CrossRefGoogle Scholar
  42. 42.
    Hyytiä E, Virtamo J (2007) Random waypoint mobility model in cellular networks. Wirel Netw 13(2):177–188CrossRefGoogle Scholar
  43. 43.
  44. 44.

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sabrine Naimi
    • 1
    • 2
  • Anthony Busson
    • 3
  • Véronique Vèque
    • 1
  • Ridha Bouallegue
    • 2
  1. 1.Laboratory of Signals and SystemsUniversité Paris Sud - CentraleSupelec - CNRSOrsayFrance
  2. 2.Innov’COM Laboratory Higher School of Communication - TunisiaTunisTunisia
  3. 3.University Claude Bernard Lyon 1 - LIP (ENS Lyon - INRIA - CNRS - UCBL)VilleurbanneFrance

Personalised recommendations