International Journal of Automotive Technology

, Volume 19, Issue 6, pp 1055–1059 | Cite as

Creep Life Prediction of Alloy 718 for Automotive Engine Materials

  • Yu Sik Kong
  • Jiyoung Yu
  • Young Whan ParkEmail author


This study was carried out to investigate the creep life at the high temperature of the Alloy 718 for automotive engine components using the initial strain parameter method (ISPM). Creep tests have performed at elevated temperatures in the range of 550 oC to 700 oC in this work. We also carried out constant stress creep tests. The initial strains were measured during 1 minute after loading. Both the creep stress and rupture time depend on the initial strain. We calculated the creep life of Alloy 718 by using the creep life prediction equations obtained from the ISPM. Then, we compared the creep life predicted by the ISPM to the Larson-Miller parameter (LMP). The experimental rupture time and the calculated rupture time by using the ISPM agreed with a confidence level of 95 %. The creep life predicted by using the ISPM was in very good agreement with the creep life predicted using the LMP method.

Key Words

Initial Strain Parameter Method (ISPM) Elevated temperatures Ni-based Alloy 718 Creep life prediction Larson-Miller Parameter (LMP) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM-E139 (2006). Standard Test Methods for Conduction Creep, Creep-rupture, and Stress-rupture Test of Metallic Materials, 1−12.Google Scholar
  2. Cane, B. J. and Aplin, P. F. (1993). Creep life assessment methods. Proc. Pressure Vessels and Piping Conf., 25−29.Google Scholar
  3. Kim, I. S., Trevor, B., Yeom, J. T. and Park, N. K. (2000). Characterization of deformation behavior for waspaloy under creep-fatigue interaction. Metals and Materials, 6, 407–413.CrossRefGoogle Scholar
  4. Kim, S. H. and Kim, H. K. (2009). Multiaxial stress creep rupture mechanisms of AZ31 magnesium alloy. Int. J. Automotive Technology 10, 3, 365–372.CrossRefGoogle Scholar
  5. Kim, S. J., Kong, Y. S., Jung, W. T., Yeom, J. T. and Park, N. K. (2007). Creep life prediction of waspaloy using the initial strain parameter technique. Progresses in Fracture and Strength of Materials and Structures, Key Engineering Materials, 353–358, 2644−2647.Google Scholar
  6. Kim, W. G., Kim, S. H. and Ryu, W. S. (2001). Creep characterzation of type 316LN and HT-9 stainless steels by the K-R creep damage model. KSME Int. Journal 15, 11, 1463–1471.CrossRefGoogle Scholar
  7. Kong, Y. S., Yoon, H. K. and Oh, S. K. (2003). Creep life prediction for Udimet720 material using the initial strain method (ISM). KSME Int. Journal 17, 4, 469–476.CrossRefGoogle Scholar
  8. Kong, Y. S., Yoon, H. K., Park, Y. H. and Kim, S. J. (2004). Creep life prediction of high temperature tube materials for power plants. Key Engineering Materials, 261–263, 1115−1122.Google Scholar
  9. Kwon, S. W., Kong, Y. S. and Kim, S. J. (2008). High temperature creep rupture characteristics of Ni-based alloy718. J. Ocean Engineering and Technology 22, 6, 52–57.Google Scholar
  10. Larson, F. R. and Miller, J. (1952). A time temperature relationship for rupture and creep stresses. Trans. ASME, 74, 765–775.Google Scholar
  11. Oh, S. K., Kong, Y. S. and Yang, H. T. (1999). Creep prediction by initial strain method for aging treated friction welds of heat resisting steels. Int. J. Ocean Engineering and Technology 2, 2, 13–18.Google Scholar
  12. Park, K. S., Chung, H. S., Lee, K. J., Jung, Y. G., Kang, C. Y. and Endo, T. (2005). Effect of hardness changes and microstructural degradation on creep behavior of a Mod.9Cr-1Mo steel. Int. J. Automotive Technology 6, 1, 45–52.Google Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Deptment of Mechanical EngineeringPukyong National UniversityBusanKorea
  2. 2.Technical Research CenterHyundai Steel CompanyChungnamKorea

Personalised recommendations