Advertisement

The Relative Role of Mangroves on Wave Erosion Mitigation and Sediment Properties

  • David Alejandro Sánchez-NúñezEmail author
  • Gladys Bernal
  • José Ernesto Mancera Pineda
Article

Abstract

Fringe mangroves face waves daily and are thought to protect against erosion in low wave energy sites and undergo erosion if exposed to high wave energy. We aimed to understand the effects of fringe mangroves on erosion and sediment dynamics and of wave exposure on seedling density at three sites of increasing wave energy. Sediment properties (mean grain size, sorting, and bulk density) were assessed within each site in unvegetated and mangrove-vegetated shores in wet and dry seasons. In addition, we estimated seasonal erosion/accretion rates for 2.4 years and seedling density in two zones from the forest edge with contrasting wave exposure. Regression analysis was carried out to explain sediment properties and erosion rate variance in response to the vegetation volume that opposes wave energy and to explain erosion rates in response to wave energy. Mangrove-vegetated shores reduced erosion rates from 3 to 15 times in the two sites with higher wave energy, while the vegetated site with the lowest wave energy experienced accretion compared to minor erosion along the unvegetated shore. Shores with greater Rhizophora mangle basal areas and vegetation volumes favored deposition of particles with low settling rates, different sediment classes, reduced erosion rates, and increased shoreline stability. Mangrove seedling density decreased between 2 and 43 times from the low wave exposure zone to the high wave exposure zone at the forest edge in studied sites. In order to increase vegetation volume, coastal adaptation based on mangroves must limit human disturbances and facilitate epiphytic relationships with oysters.

Keywords

Erosion Accretion Wave energy Shoreline stabilization Rhizophora mangle Colombian Caribbean 

Notes

Acknowledgments

The research programs of Valuation and Use of Marine and Coastal Resources-VAR and Marine Environmental Quality-CAM of Marine and Coastal Research Institute “Jose Benito Vives de Andréis”-INVEMAR funded field activities during 2015. COLCIENCIAS (code 110171451047) funded this study from 2016 to 2019. The research was performed in the facilities of CECIMAR and is part of the doctoral thesis of the first author. We thank Dr. Ken Krauss, Dr. Rodolfo Silva Casarín, and Dra. Maria Luisa Martínez and two anonymous reviewers for their critical reading of this manuscript; and Keila Guillén, Domingo Rodríguez, Remberto de la Rosa, Kevin de la Rosa, Selene Rojas, and Lucia Licero for their valuable help during field expeditions. First author was funded by the COLCIENCIAS grant no. 617-2013 and by the Corporation Center of Excellence in Marine Sciences-CEMarin (Call # 12-2018). This is the contribution CTRB-1232 of INVEMAR and 489 of CECIMAR programa de Posgrado en Biología–línea Biología Marina.

Supplementary material

12237_2019_628_Fig10_ESM.png (9 kb)
Fig. S1

Seedling density and mean wave energy conditions present at two zones from the mangrove edge. Different letters indicate statistically significant differences at p < 0.05 between seedling densities according to the Mann-Whitney U test. (PNG 8 kb)

12237_2019_628_MOESM1_ESM.tiff (220 kb)
High resolution image (TIFF 220 kb)

References

  1. Adame, Maria F, David Neil, Sara F Wright, and Catherine E Lovelock. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science 86: 21–30. doi: https://doi.org/10.1016/j.ecss.2009.10.013, 1.
  2. Asp, N.E., V.J.C. Gomes, C.A.F. Schettini, P.W.M. Souza-Filho, E. Siegle, A.S. Ogston, C.A. Nittrouer, J.N.S. Silva, W.R. Nascimento Jr., S.R. Souza, L.C.C. Pereira, and M.C. Queiroz. 2018. Sediment dynamics of a tropical tide-dominated estuary: turbidity maximum, mangroves and the role of the Amazon River sediment load. Estuarine, Coastal and Shelf Science 214: 10–24.  https://doi.org/10.1016/j.ecss.2018.09.004.CrossRefGoogle Scholar
  3. Augustinus, Pieter G.E.F. 1995. Geomorphology and sedimentology of mangroves. In Geomorphology and sedimentology of estuaries No. 53 in developments in sedimentology, ed. G. Perillo, vol. 3, 493–495. Amsterdam: Elsevier.  https://doi.org/10.1063/1.460797.Google Scholar
  4. Balke, Thorsten, Tjeerd J. Bouma, Erik M. Horstman, Edward L. Webb, Paul L.A. Erftemeijer, and Peter M.J. Herman. 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series 440: 1–9.  https://doi.org/10.3354/meps09364.CrossRefGoogle Scholar
  5. Balke, Thorsten, Andrew Swales, Catherine E. Lovelock, Peter M J Herman, and Tjeerd J. Bouma. 2015. Limits to seaward expansion of mangroves: translating physical disturbance mechanisms into seedling survival gradients. Journal of Experimental Marine Biology and Ecology 467: 16–25.  https://doi.org/10.1016/j.jembe.2015.02.015.
  6. Bao, Tran Quang, Xuan Mai, Chuong My, and Ha Noi. 2011. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53 (3): 807–818.  https://doi.org/10.5697/oc.53-3.807.CrossRefGoogle Scholar
  7. Bernal, G., Andres F. Osorio, L. Urrego, D. Pelaez, E. Molina, S. Zea, R.D. Montoya, and N. Villegas. 2016. Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. Journal of Marine Systems 164: 85–100.  https://doi.org/10.1016/j.jmarsys.2016.08.007.CrossRefGoogle Scholar
  8. Breithaupt, Joshua L., Joseph M. Smoak, Victor H. Rivera-Monroy, Edward Castañeda-Moya, Ryan P. Moyer, Marc Simard, and Christian J. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180.  https://doi.org/10.1016/j.margeo.2017.07.002.CrossRefGoogle Scholar
  9. Brinkman, R M. 2006. Wave attenuation in mangrove forests: an investigation through field and theoretical studies. PhD Thesis. James Cook University.Google Scholar
  10. Browne, Matthew, Darrell Strauss, Bruno Castelle, Michael Blumenstein, Rodger Tomlinson, and Chris Lane. 2006. Empirical estimation of nearshore waves from a global deep-water wave model. IEEE Geoscience and Remote Sensing Letters 3 (4): 462–466.  https://doi.org/10.1109/LGRS.2006.876225.CrossRefGoogle Scholar
  11. Cady, J G, L P Wilding, and L R Dress. 1986. Petrographic microscope techniques. In Methods of soil analysis: part 1—physical and mineralogical methods, SSSA, MBook Ser. 5.1, ed. A. Klute, 185–218. Madison, WI: SSSA, ASA.Google Scholar
  12. Cahoon, Donald R, and James C Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes 1(3): 173–186.  https://doi.org/10.1023/A:1009904816246.
  13. Callaway, John C., Donald R. Cahoon, James C. Lynch, R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal. 2013. The surface elevation table–marker horizon method for measuring wetland accretion and elevation dynamics. In Methods in biogeochemistry of wetlands, SSSA Book Ser. 10, ed. R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal, 901–917. Madison, WI: SSSA.  https://doi.org/10.2136/sssabookser10.c46.Google Scholar
  14. Cao, Haijin, Yujun Chen, Ye Tian, and Weibing Feng. 2016. Field investigation into wave attenuation in the mangrove environment of the South China Sea coast. Journal of Coastal Research 322: 1417–1427.  https://doi.org/10.2112/JCOASTRES-D-15-00124.1.CrossRefGoogle Scholar
  15. CARICOMP. 2001. Manual of methods for mapping and monitoring of physical and biological parameters in the coastal zone of the Caribbean. Kingston, Jamaica: CARICOMP Data Management Center, University of West Indies.Google Scholar
  16. Corporación Autónoma Regional de Los Valles del Sinú y del San Jorge – CVS e Instituto de Investigaciones Marinas y Costeras -INVEMAR. 2010. Plan integral de manejo del Distrito de Manejo Integrado (DMI) bahía de Cispatá - La Balsa - Tinajones y sectores aledaños del delta estuarino del río Sinú, departamento de Córdoba. Santa Marta: INVEMAR.Google Scholar
  17. DIMAR. 2018. Registro en frecuencia horaria del mareógrafo de Coveñas. Bogotá, Colombia: Dirección General Marítima.Google Scholar
  18. ECMWF. 2019. Copernicus, “Climate Reanalysis, About ERA5.”Google Scholar
  19. Elliot, E., J. Heil, E. Kelly, and H. Manger. 1999. Soil structural and other physical properties. In Standard soil methods for long term ecological research, ed. D. Robertson, D. Coleman, C. Bledsoe, and P. Sollins, 55–73. New York: Oxford University Press.Google Scholar
  20. Ellison, Joanna C. 1993. Mangrove retreat with rising sea level, Bermuda. Estuarine, Coastal and Shelf Science 37 (1): 75–87.CrossRefGoogle Scholar
  21. Flater, Dave. 2007. Xtide47. https://flaterco.com/xtide/files.html. Accessed April 02 2018.
  22. Folk, Robert L, and William C Ward. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3–26, 1.Google Scholar
  23. Folk, Robert L. 1966. A review of grain-size parameters. Sedimentology 6 (2): 73–93.  https://doi.org/10.1111/j.1365-3091.1966.tb01572.x.CrossRefGoogle Scholar
  24. Folk, Robert L. 1980. Petrology of sedimentary rocks. Austin, TX: Hemphill Publishing Co..Google Scholar
  25. Frihy, Omran E, and Morad F Lotfy. 1994. Mineralogy and textures of beach sands in relation to erosion and accretion along the Rosetta promontory of the Nile Delta, Egypt. Journal of Coastal Research 10: 588–599.Google Scholar
  26. Furukawa, K., Eric Wolanski, and H. Mueller. 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science 44 (3): 301–310.  https://doi.org/10.1006/ecss.1996.0120.CrossRefGoogle Scholar
  27. Gedan, Keryn B, Matthew L Kirwan, Eric Wolanski, Edward B Barbier, and Brian R Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29. doi: https://doi.org/10.1007/s10584-010-0003-7, 1.
  28. Guillén, Jorge, and Jose A Jimenez. 1995. Processes behind the longshore variation of the sediment grain size in the Ebro Delta coast. Journal of Coastal Research 11: 205–218.Google Scholar
  29. Guillén, Keila, David Alejandro Sánchez-Núñez, Camilo Gómez, Andrea Contreras, and William Olivero. 2016. Informe valoración integral del servicio de control de erosión que presta el manglar en el DMI cispata. Colombia: Santa Marta.Google Scholar
  30. Hochard, Jacob P, Stuart Hamilton, and Edward B Barbier. 2019. Mangroves shelter coastal economic activity from cyclones. Proceedings of the National Academy of Sciences 116: 12232–12237. doi: https://doi.org/10.1073/pnas.1820067116, 25.
  31. Horstman, Erik M., C.M. Dohmen-Janssen, P.M.F. Narra, N.J.F. van den Berg, M. Siemerink, and S.J.M.H. Hulscher. 2014. Wave attenuation in mangroves: a quantitative approach to field observations. Coastal Engineering 94: 47–62.  https://doi.org/10.1016/j.coastaleng.2014.08.005.CrossRefGoogle Scholar
  32. IDEAM. 2015. Atlas interactivo climatológico de Colombia. Information 1981-2010. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Bogota. D. C. http://atlas.ideam.gov.co/visorAtlasClimatologico.html. Accessed 01 May 2018 2018-05-01.
  33. Imbert, Daniel. 2018. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9 (7).  https://doi.org/10.1002/ecs2.2231.
  34. INVEMAR-GEO. 2015. Aportes sedimentarios del río Sinú y su relación on los procesos costeros del departamento de Córdoba. Santa Marta: INVEMAR.  https://doi.org/10.1179/cmq.1966.5.2.143.Google Scholar
  35. Kamphuis, J.W. 2010. Introduction to coastal engineering and management. Vol. 30. Singapore: World scientific.CrossRefGoogle Scholar
  36. Karimpour, Arash, Qin Chen, and Robert R Twilley. 2015. A field study of how wind waves and currents may contribute to the deterioration of saltmarsh fringe. Estuaries and Coasts 39: 935–950. doi: https://doi.org/10.1007/s12237-015-0047-z, 4.
  37. Karimpour, Arash, and Qin Chen. 2017. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox. Computers and Geosciences 106: 181–189.  https://doi.org/10.1016/j.cageo.2017.06.010.CrossRefGoogle Scholar
  38. King, D B, and C J Galvin. 2002. Coastal sediment properties, chapter III-1. In Coastal Engineering Manual, Part III, 1100:41. Washington, DC.Google Scholar
  39. Kjerfve, Björn. 1981. Tides of the Caribbean Sea. Journal of Geophysical Research 86 (C5): 4243–4247.  https://doi.org/10.1029/jc086ic05p04243.CrossRefGoogle Scholar
  40. Krauss, Ken W., J.A. Allen, and D.R. Cahoon. 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science 56 (2): 251–259.  https://doi.org/10.1016/S0272-7714(02)00184-1.CrossRefGoogle Scholar
  41. Krauss, Ken W., Thomas W. Doyle, Terry J. Doyle, Christopher M. Swarzenski, Andrew S. From, Richard H. Day, and William H. Conner. 2009. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29 (1): 142–149.  https://doi.org/10.1672/07-232.1.CrossRefGoogle Scholar
  42. Krauss, Ken W., Donald R. Cahoon, James A. Allen, Katherine C. Ewel, James C. Lynch, and Nicole Cormier. 2010. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia. Ecosystems 13 (1): 129–143.  https://doi.org/10.1007/s10021-009-9307-8.CrossRefGoogle Scholar
  43. Krauss, Ken W., Karen L. McKee, Catherine E. Lovelock, Donald R. Cahoon, Neil Saintilan, Ruth Reef, and Luzhen Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202 (1): 19–34.CrossRefGoogle Scholar
  44. Li, Michael Zhenlin, and Paul D. Komar. 1992. Longshore grain sorting and beach placer formation adjacent to the Columbia River. Journal of Sedimentary Research 62: 429–441.CrossRefGoogle Scholar
  45. Lovelock, Catherine E., Ilka C. Feller, Karen L. McKee, and And R. Thompson. 2005. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribbean Journal of Science 41: 456–464.Google Scholar
  46. Madsen, J.D., P.A. Chambers, W.F. James, E.W. Koch, and D.F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444 (1/3): 71–84.CrossRefGoogle Scholar
  47. Marani, M., A. D’Alpaos, S. Lanzoni, and M. Santalucia. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38.  https://doi.org/10.1029/2011GL048995.
  48. Martínez, J. Ignacio, Yusuke Yokoyama, Andres Gomez, Adriana Delgado, Hiroyuki Matsuzaki, and Esteban Rendon. 2010. Late Holocene marine terraces of the Cartagena region, southern Caribbean: the product of neotectonism or a former high stand in sea-level? Journal of South American Earth Sciences 29 (2): 214–224.  https://doi.org/10.1016/j.jsames.2009.08.010.CrossRefGoogle Scholar
  49. Mazda, Yoshihiro, M. Magi, M. Kogo, and P. Nguyen. 1997a. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt Marshes 1 (2): 127–135.CrossRefGoogle Scholar
  50. Mazda, Yoshihiro, Eric Wolanski, Brian King, Akira Sase, Daisuke Ohtsuka, and Michimasa Magi. 1997b. Drag force due to vegetation in mangrove swamps. Mangroves and Salt Marshes 1 (3): 193–199.CrossRefGoogle Scholar
  51. Mazda, Yoshihiro, Michimasa Magi, Yoshichika Ikeda, Tadayuki Kurokawa, and Tetsumi Asano. 2006. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecology and Management 14 (4): 365–378.  https://doi.org/10.1007/s11273-005-5388-0.CrossRefGoogle Scholar
  52. McKee, Karen L, Donald R Cahoon, and Ilka C Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556. doi: https://doi.org/10.1111/j.1466-8238.2007.00317.x, 5.
  53. McKee, Karen L. 2011a. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91 (4): 475–483.  https://doi.org/10.1016/j.ecss.2010.05.001.CrossRefGoogle Scholar
  54. McKee, Karen L, and William C V Vervaeke. 2011b. Impacts of human disturbance on soil erosion potential and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays Ranges, Belize. Smithsonian Contributions to the Marine Sciences 38: 415–427.Google Scholar
  55. McLoughlin, Sean M., Patricia L. Wiberg, Ilgar Safak, and Karen J. McGlathery. 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts 38 (2): 620–638.  https://doi.org/10.1007/s12237-014-9841-2.CrossRefGoogle Scholar
  56. Morris, Rebecca L., Teresa M. Konlechner, Marco Ghisalberti, and Stephen E Swearer. 2018. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biology 24: 1827–1842. doi: https://doi.org/10.1111/gcb.14063, 5.
  57. Narayan, Siddharth. 2009. The effectiveness of mangroves in attenuating cyclone-induced waves. M. S. Thesis. Department of Civil Engineering and Geosciences, Section of Hydraulic Engineering, Coastal Engineering. doi: https://doi.org/10.9753/icce.v32.waves.50.
  58. Nguyen, Hai Hoa, Clive McAlpine, David Pullar, Stephen Joseph Leisz, and Gramotnev Galina. 2015. Drivers of coastal shoreline change: case study of Hon Dat coast, Kien Giang, Vietnam. Environmental Management 55 (5): 1093–1108.  https://doi.org/10.1007/s00267-015-0455-7.CrossRefGoogle Scholar
  59. Norris, Benjamin K., Julia C. Mullarney, Karin R. Bryan, and Stephen M. Henderson. 2017. The effect of pneumatophore density on turbulence: a field study in a Sonneratia-dominated mangrove forest, Vietnam. Continental Shelf Research 147: 114–127.  https://doi.org/10.1016/j.csr.2017.06.002.CrossRefGoogle Scholar
  60. Ordoñez, S.A., M.L. Bastidas, A.C. Dueñas, S.A. Jerez, M.E. González, P. Quintero, and C. Ricaurte. 2016. Aportes sedimentarios del río Sinú y su relación con los procesos costeros del departamento de Córdoba fase II. Colombia: Santa Marta.Google Scholar
  61. Osorio, Andres F., R.D. Montoya, J.C. Ortiz, and D. Peláez. 2016. Construction of synthetic ocean wave series along the Colombian Caribbean Coast: a wave climate analysis. Applied Ocean research 56: 119–131.  https://doi.org/10.1016/j.apor.2016.01.004.CrossRefGoogle Scholar
  62. Pace, N.L., and N. Morgan. 2017. Living shorelines: eroding regulatory barriers to coastal resilience. Natural Resources and Environment 31: 44.Google Scholar
  63. Page, William. 1982. Tectonic deformation of the Caribbean coast Northwestern Colombia. In General Geology, Geomorphology and Neotectonics of Northwestern Colombia 10th Caribbean Geol. Conference, ed. H. Duque-Caro, A1–A18. Cartagena.Google Scholar
  64. Parker, Kyle Ryan. 2014. Field and numerical investigation of wave power and shoreline retreat in Terrebonne Bay, Southern Louisiana. M.Sc. Thesis. Louisiana State University and Agricultural and Mechanical College.Google Scholar
  65. Perry, Christopher T., and Andrew Berkeley. 2009. Intertidal substrate modification as a result of mangrove planting: Impacts of introduced mangrove species on sediment microfacies characteristics. Estuarine, Coastal and Shelf Science 81 (2): 225–237.  https://doi.org/10.1016/j.ecss.2008.10.019.CrossRefGoogle Scholar
  66. Quartel, S., A. Kroon, P.G.E.F. Augustinus, P. Van Santen, and N.H. Tri. 2007. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. Journal of Asian Earth Sciences 29 (4): 576–584.  https://doi.org/10.1016/j.jseaes.2006.05.008.CrossRefGoogle Scholar
  67. Rangel-Buitrago, Nelson Guillermo, Giorgio Anfuso, and Allan Thomas Williams. 2015. Coastal erosion along the Caribbean coast of Colombia: magnitudes, causes and management. Ocean and Coastal Management 114: 129–144.  https://doi.org/10.1016/j.ocecoaman.2015.06.024.CrossRefGoogle Scholar
  68. Rangel-Buitrago, Nelson Guillermo, Allan Thomas Williams, and Giorgio Anfuso. 2018. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean and Coastal Management 156: 58–75.  https://doi.org/10.1016/j.ocecoaman.2017.04.006.CrossRefGoogle Scholar
  69. Restrepo, Juan David. 2008. Deltas de Colombia. Edited by J D Restrepo. Medellin-Colombia: Juan D Restrepo Ángel, Fondo Editorial Universidad EAFIT.Google Scholar
  70. Restrepo-López, Juan Camilo, Juan Carlos Ortiz-Royero, Luis Otero-Díaz, and Silvio Raúl Ospino-Ortiz. 2015. Transporte de sedimentos en suspensión en los principales ríos del Caribe colombiano: magnitud, tendencias y variabilidad. Revista Academia Colombiana de Ciencias Exactas Físicas y Naturales 39 (153): 527–546.CrossRefGoogle Scholar
  71. Saifullah, S.M., and E. Elahi. 1992. Pneumatophore density and size in mangroves of Karachi, Pakistan. Pakistan Journal of Botany 24: 5–10.Google Scholar
  72. Sánchez-Núñez, David Alejandro, José Ernesto Mancera-Pineda, and Gladys Bernal. 2017. Coastal erosion control in fringe mangroves affected by logging in the Colombian Caribbean. In Integrating Ecosystems in Coastal Engineering Practice. Proceedings of the Summer School. September 18–30, 2017-Puerto Morelos, Mexico, ed. R. Silva and V. Chaves, 249–252. Gottingen, Germany: Cuvillier Verlag.Google Scholar
  73. Sathirathai, Suthawan, and Edward B. Barbier. 2001. Valuing mangrove conservation in Southern Thailand. Contemporary Economic Policy 19 (2): 109–122.  https://doi.org/10.1111/j.1465-7287.2001.tb00054.x.CrossRefGoogle Scholar
  74. Shepard, Christine C., Caitlin M. Crain, and Michael W. Beck. 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6 (11): e27374.  https://doi.org/10.1371/journal.pone.0027374.CrossRefGoogle Scholar
  75. Simpson, M C, D Scott, M Harrison, R Sim, N Silver, E O’Keeffe, S Harrison, et al. 2010. Quantification and magnitude of losses and damages resulting from the impacts of climate change: modeling the transformational impacts and coasts of sea level rise in the Caribbean (Full document). Barbados, West Indies.Google Scholar
  76. Spalding, Mark D., Susan Ruffo, Carmen Lacambra, Imèn Meliane, Lynne Zeitlin Hale, Christine C. Shepard, and Michael W. Beck. 2014. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean and Coastal Management 90: 50–57.  https://doi.org/10.1016/j.ocecoaman.2013.09.007.CrossRefGoogle Scholar
  77. Temmerman, Stijn, Patrick Meire, Tjeerd J. Bouma, Peter M.J. Herman, Tom Ysebaert, and Huib J. De Vriend. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504 (7478): 79–83.  https://doi.org/10.1038/nature12859.CrossRefGoogle Scholar
  78. Thampanya, U., J.E. Vermaat, S. Sinsakul, and N. Panapitukkul. 2006. Coastal erosion and mangrove progradation of Southern Thailand. Estuarine, Coastal and Shelf Science 68 (1-2): 75–85.  https://doi.org/10.1016/j.ecss.2006.01.011.CrossRefGoogle Scholar
  79. Toorman, Erik A., Edward Anthony, Pieter G.E.F. Augustinus, Antoine Gardel, Nicolas Gratiot, Oudho Homenauth, Nicolas Huybrechts, Jaak Monbaliu, Kene Moseley, and Sieuwnath Naipal. 2018. Interaction of mangroves, coastal hydrodynamics, and morphodynamics along the coastal fringes of the Guianas. In Threats to Mangrove Forests, Coastal Research Library 25, ed. C.W. Makowski and C.W. Finkl, 429–473. Cham: Springer.  https://doi.org/10.1007/978-3-319-73016-5_20.CrossRefGoogle Scholar
  80. Van Santen, P., P.G.E.F. Augustinus, B.M. Janssen-Stelder, S. Quartel, and N.H. Tri. 2007. Sedimentation in an estuarine mangrove system. Journal of Asian Earth Sciences 29 (4): 566–575.  https://doi.org/10.1016/j.jseaes.2006.05.011.CrossRefGoogle Scholar
  81. Vanegas, Catalina A., Andres F. Osorio, and Ligia E. Urrego. 2017. Wave dissipation across a Rhizophora mangrove patch on a Colombian Caribbean Island: an experimental approach. Ecological Engineering.  https://doi.org/10.1016/j.ecoleng.2017.07.014.
  82. Vo-Luong, H.P., and S.R. Massel. 2006. Experiments on wave motion and suspended sediment concentration at Nang Hai, Can Gio mangrove forest, Southern Vietnam. Oceanologia 48: 23–40.Google Scholar
  83. Wei, Chih Chiang. 2018. Nearshore wave predictions using data mining techniques during typhoons: a case study near Taiwan’s northeastern coast. Energies 11 (1).  https://doi.org/10.3390/en11010011.
  84. Willemsen, P.W.J.M., Erik M. Horstman, B.W. Borsje, D.A. Friess, and C.M. Dohmen-Janssen. 2016. Sensitivity of the sediment trapping capacity of an estuarine mangrove forest. Geomorphology 273: 189–201.  https://doi.org/10.1016/j.geomorph.2016.07.038.CrossRefGoogle Scholar
  85. Woodroffe, C.D., K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8 (1): 243–266.  https://doi.org/10.1146/annurev-marine-122414-034025.CrossRefGoogle Scholar
  86. Yang, Juan, Jay Gao, Alan Cheung, Baolin Liu, Luitgard Schwendenmann, and Mark John Costello. 2013. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand. Estuarine, Coastal and Shelf Science 134: 11–18.  https://doi.org/10.1016/j.ecss.2013.09.017.CrossRefGoogle Scholar
  87. Zhang, Xiaofeng, Vivien P Chua, and Hin-fatt Cheong. 2015. Hydrodynamics in mangrove prop roots and their physical properties. Journal of Hydro-Environment Research 9: 281–294. doi: https://doi.org/10.1016/j.jher.2014.07.010, 2.
  88. Zhang, Keqi, Huiqing Liu, Yuepeng Li, Hongzhou Xu, Jian Shen, Jamie Rhome, and Thomas J. Smith. 2012. The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science 102–103: 11–23.  https://doi.org/10.1016/j.ecss.2012.02.021.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  1. 1.Instituto de Estudios en Ciencias del Mar –CECIMARUniversidad Nacional de Colombia, Sede CaribeSanta MartaColombia
  2. 2.Intituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis”- INVEMARSanta MartaColombia
  3. 3.CEMarin - Corporation Center of Excellence in Marine SciencesBogotáColombia
  4. 4.Facultad de Minas, Departamento de Geociencias y Medio AmbienteUniversidad Nacional de Colombia, Sede MedellínMedellínColombia
  5. 5.Universidad Nacional de Colombia, Sede BogotáBogotáColombia

Personalised recommendations