Dominant Bivalve in an Exposed Sandy Beach Regulates Community Structure Through Spatial Competition

  • M. Cecilia CarcedoEmail author
  • Sandra M. Fiori
  • Marco Scotti
  • Maysa Ito
  • M. Sofía Dutto
  • M. Elizabeth Carbone


Fluctuations in abundance of dominant species can cause competitive release of resources with consequences on community structure and functioning. In the present study, changes in the intertidal macroinfauna community of an exposed sandy beach were evaluated during two contrasting periods characterized by low and high densities of the yellow clam Amarilladesma mactroides. The increase in clam abundance and biomass was associated with a significant decrease in abundance of the rest of the community. In particular, a decline was observed for the pea crab Austinixa patagoniensis, a commensal species that lives in the burrows of the shrimp Sergio mirim. Our study demonstrates that fluctuations in clam abundance lead to long-term changes in community structure, suggesting the presence of competitive interactions. The environmental stability over the two periods strengthens the hypothesis that the competition between species is crucial for shaping the ecological community. Stable isotope analysis allows discarding trophic competition as mechanism of exclusion. Image maps reveal complementary distribution of species, showing the relevance of the spatial competition, which is mediated by changes in abundance of a third species. Indeed, high densities of A. mactroides reduce the available area for the establishment of the S. mirim burrows, limiting the foraging behavior of its commensal, the pea crab. Such an interaction drives density-dependent exclusion of the pea crab from the intertidal zone following the establishment of the yellow clam population. This study illustrates that spatial competition triggered by the increase of a bed-forming species can have community-wide consequences in exposed sandy beaches.


Intertidal zone Population density Yellow clam Pea crab Macroinfauna community SW Atlantic 



We very much appreciate the hard fieldwork of all members of the Benthic Ecology Group of the Argentinian Institute of Oceanography (IADO), especially Juan Pablo Roldán. We thank Thomas Hansen and Cordula Meyer for the valuable contribution on the stable isotope analysis. Special thanks to Ana Martínez and Julieta Carbonella for their assistance in sample preparation and to Martin Amodeo and Celeste López Abbate for their help in data analysis. We also gratefully acknowledge the associate editor and two anonymous reviewers for their suggestions and comments that improved the earlier version of the manuscript.

Funding Information

This work was financially supported by grants from the National Council of Scientific and Technical Research (PIP-CONICET 112-201301-00362) and from National Agency for Scientific and Technological Promotion (PICT 2017-2738) to SMF. MCC was supported by a doctoral fellowship from the National Council of Scientific and Technical Research (CONICET-Argentina). MI acknowledges financial support of CAPES foundation (Ministry of Education of Brazil) through the Doctoral Programme (process number: 99999.001303/2015-05).

Supplementary material

12237_2019_622_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)
12237_2019_622_Fig7_ESM.png (1.9 mb)
Fig S1

(PNG 1971 kb)

12237_2019_622_MOESM2_ESM.tif (3.2 mb)
High Resolution Image (TIF 3318 kb)
12237_2019_622_Fig8_ESM.png (524 kb)
Fig S2

(PNG 523 kb)

12237_2019_622_MOESM3_ESM.tif (1.2 mb)
High Resolution Image (TIF 1214 kb)
12237_2019_622_Fig9_ESM.png (500 kb)
Fig S3

(PNG 500 kb)

12237_2019_622_MOESM4_ESM.tif (1.5 mb)
High Resolution Image (TIF 1514 kb)
12237_2019_622_Fig10_ESM.png (452 kb)
Fig S4

(PNG 452 kb)

12237_2019_622_MOESM5_ESM.tif (1.2 mb)
High Resolution Image (TIF 1227 kb)


  1. Arntz, W. E., T. Brey, J. Tarazona, and A. Robles. 1987. Changes in the structure of a shallow sandy-beach community in Peru during an El Niño event. In The Benguela and comparable ecosystems, ed. A. I. Payne, J. A. Gulland, and K. H. Bink, 5: 645–658. South African Journal of Marine Science.Google Scholar
  2. Bolker, B.M. 2008. Ecological models and data in R. Princeton, N.J: Princeton University Press.CrossRefGoogle Scholar
  3. Brown, J.H., and J.C. Munger. 1985. Experimental manipulation of a desert rodent community: Food addition and species removal. Ecology 66 (5): 1545–1563.CrossRefGoogle Scholar
  4. Burrows, M.T., D.S. Schoeman, A.J. Richardson, J.G. Molinos, A. Hoffmann, L.B. Buckley, P.J. Moore, C.J. Brown, J.F. Bruno, C.M. Duarte, B.S. Halpern, O. Hoegh-Guldberg, C.V. Kappel, W. Kiessling, M.I. O’Connor, J.M. Pandolfi, C. Parmesan, W.J. Sydeman, S. Ferrier, K.J. Williams, and E.S. Poloczanska. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507 (7493): 492–495.CrossRefGoogle Scholar
  5. Campo de Ferreras, A., A. Capelli de Steffens, and P. Diez. 2004. El clima del suroeste bonaerense. Bahía Blanca: EdiUNS.Google Scholar
  6. Carcedo, M.C., S.M. Fiori, M.C. Piccolo, M.C. López Abbate, and C.S. Bremec. 2015. Variations in macrobenthic community structure in relation to changing environmental conditions in sandy beaches of Argentina. Estuarine, Coastal and Shelf Science 166: 56–64.CrossRefGoogle Scholar
  7. Carcedo, M.C., S.M. Fiori, and C.S. Bremec. 2017. Zonation of macrobenthos across a mesotidal sandy beach: Variability based on physical factors. Journal of Sea Research 121: 1–10.CrossRefGoogle Scholar
  8. Cardoso, R., and V. Veloso. 2003. Population dynamics and secondary production of the wedge clam Donax hanleyanus (Bivalvia: Donacidae) on a high-energy, subtropical beach of Brazil. Marine Biology 142 (1): 153–162.CrossRefGoogle Scholar
  9. Checon, H.H., G.N. Corte, Y.M.S. Esmaeili, and A.C.Z. Amaral. 2018. Nestedness patterns and the role of morphodynamics and spatial distance on sandy beach fauna: Ecological hypotheses and conservation strategies. Scientific Reports 8 (1): 3759.CrossRefGoogle Scholar
  10. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18 (1): 117–143.CrossRefGoogle Scholar
  11. Connell, J.H. 1972. Community interactions on marine rocky intertidal shores. Annual Review of Ecology and Systematics 3 (1): 169–192.CrossRefGoogle Scholar
  12. Coscarón, S. 1959. La almeja amarilla (Mesodesma (T.) mactroides Deshayes) de la costa de la provincia de Buenos Aires. Agro Publicación Técnica 1: 1–66.Google Scholar
  13. Cressie, N. 1991. Stastistics for spatial data. New York: John Wiley and Sons.Google Scholar
  14. Croker, R.A., and E.B. Hatfield. 1980. Space partitioning and interactions in an intertidal sand-burrowing amphipod guild. Marine Biology 61 (1): 79–88.CrossRefGoogle Scholar
  15. Dadón, J.R. 2005. Changes in the intertidal community structure after a mass mortality event in sandy beaches of Argentina. Contributions to Zoology 74 (1-2): 27–39.CrossRefGoogle Scholar
  16. Defeo, O. 1996. Experimental management of an exploited sandy beach bivalve population. Revista Chilena de Historia Natural 69: 605–614.Google Scholar
  17. Defeo, O. 1998. Testing hypotheses on recruitment, growth and mortality in exploited bivalves: An experimental perspective. Canadian Special Publication of Fisheries and Aquatic Sciences 125: 257–264.Google Scholar
  18. Defeo, O., and A. de Alava. 1995. Effects of human activities on long-term trends in sandy beach populations: The wedge clam Donax hanleyanus in Uruguay. Marine Ecology Progress Series 123: 73–82.CrossRefGoogle Scholar
  19. Defeo, O., and A. McLachlan. 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: A multi-scale analysis. Marine Ecology Progress Series 295: 1–20.CrossRefGoogle Scholar
  20. Defeo, O., and V. Scarabino. 1990. Ecological significance of a possible deposit-feeding strategy in Mesodesma mactroides (Deshayes, 1854) (Mollusca: Pelecyoda). Atlantica 12 (1): 55–65.Google Scholar
  21. Defeo, O., A. Brazeiro, A. de Alava, and G. Riestra. 1997. Is sandy beach macrofauna only physically controlled? Role of substrate and competition in isopods. Estuarine, Coastal and Shelf Science 45 (4): 453–462.CrossRefGoogle Scholar
  22. Defeo, O., D. Lercari, and J. Gomez. 2003. The role of morphodynamics in structuring sandy beach populations and communities: What should be expected? Journal of Coastal Research 352: 352–362.Google Scholar
  23. Dos Santos Alves, E., and P.R. Pezzuto. 1998. Population dynamics of Pinnixa patagoniensis Rathbun 1918 (Brachyura: Pinnotheridae) a symbiotic crab of Sergio mirim (Thalassinidea: Callianassidae) in Cassino Beach, southern Brazil. Marine Ecology 19 (1): 37–51.CrossRefGoogle Scholar
  24. Dugan, J.E., D.M. Hubbard, M.D. McCrary, and M.O. Pierson. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science 58: 25–40.CrossRefGoogle Scholar
  25. Dugan, J.E., E. Jaramillo, D.M. Hubbard, H. Contreras, and C. Duarte. 2004. Competitive interactions in macroinfaunal animals of exposed sandy beaches. Oecologia 139 (4): 630–640.CrossRefGoogle Scholar
  26. Emery, K.O. 1961. A simple method of measuring beach profiles. Limnology and Oceanography 6 (1): 90–93.CrossRefGoogle Scholar
  27. Fiori, S.M., and N.J. Cazzaniga. 1999. Mass mortality of the yellow clam, Mesodesma mactroides (Bivalvia: Mactracea) in Monte Hermoso beach, Argentina. Biological Conservation 89 (3): 305–309.CrossRefGoogle Scholar
  28. Fiori, S.M., and O. Defeo. 2006. Biogeographic patterns in life history traits of the yellow clam, Mesodesma mactroides, in sandy beaches of South America. Journal of Coastal Research 22 (4): 872–880.CrossRefGoogle Scholar
  29. Fiori, S.M., V. Vidal-Martínez, R. Simá-Álvarez, R. Rodríguez-Canul, M. Aguirre-Macedo, and O. Defeo. 2004. Field and laboratory observations of the mass mortality of the yellow clam Mesodesma mactroides in South America: The case of Isla del Jabalí, Argentina. Journal of Shellfish Research 23 (2): 451–455.Google Scholar
  30. Folk, R.L., and W.C. Ward. 1957. Brazos River bar; a study in the significance of grain size parameters. Journal of Sedimentary Research 27 (1): 3–26.CrossRefGoogle Scholar
  31. García Molinos, J., B.S. Halpern, D.S. Schoeman, C.J. Brown, W. Kiessling, P.J. Moore, J.M. Pandolfi, E.S. Poloczanska, A.J. Richardson, and M.T. Burrows. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change 8: 83–88.CrossRefGoogle Scholar
  32. Hansen, T., A. Burmeister, and U. Sommer. 2009. Simultaneous δ15N, δ13C and δ34S measurements of low-biomass samples using a technically advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry 23 (21): 3387–3393.CrossRefGoogle Scholar
  33. Harrison, J.S., and P.W. Hanley. 2005. Austinixa aidae Righi, 1967 and A. hardyi Heard and Manning, 1997 (Decapoda: Brachyura: Pinnotheridae) synonymized, with comments on molecular and morphometric methods in crustacean taxonomy. Journal of Natural History 39 (42): 3649–3662.CrossRefGoogle Scholar
  34. Huamantinco, M. A. 2012. Efecto de la variabilidad climática del balneario Monte Hermoso sobre su geomorfología costera y el confort climático (Tesis Doctoral). Universidad Nacional del Sur, Bahía Blanca, Argentina (262 pp).Google Scholar
  35. Jackson, M.C., I. Donohue, A.L. Jackson, J.R. Britton, D.M. Harper, and J. Grey. 2011a. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7: e31757.CrossRefGoogle Scholar
  36. Jackson, A.L., R. Inger, A.C. Parnell, and S. Bearhop. 2011b. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in R. Journal of Animal Ecology 80 (3): 595–602.CrossRefGoogle Scholar
  37. Lastra, M., R. de La Huz, A. G Sánchez-Mata, I. F. Rodil, K. Aerts, S. Beloso, and J. López. 2006. Ecology of exposed sandy beaches in northern Spain: Environmental factors controlling macrofauna communities. Journal of Sea Research 55(2): 128–140.Google Scholar
  38. Lawton, J.H. 1999. Are there general laws in ecology? Oikos 84 (2): 177–192.CrossRefGoogle Scholar
  39. Layman, C.A., D.A. Arrington, C.G. Montaña, and D.P. Post. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88 (1): 42–48.CrossRefGoogle Scholar
  40. Lima, M., A. Brazeiro, and O. Defeo. 2000. Population dynamics of the yellow clam Mesodesma mactroides: Recruitment variability, density-dependence and stochastic processes. Marine Ecology Progress Series 207: 97–108.CrossRefGoogle Scholar
  41. Manning, R.B., and D.L. Felder. 1989. The Pinnixa cristata complex in the western Atlantic, with descriptions of two new species (Crustacea: Decapoda: Pinnotheridae). Smithsonian Contributions to Zoology 473: 1–26.CrossRefGoogle Scholar
  42. Manta, G., M. Barreiro, L. Ortega, and O. Defeo. 2016. The effect of climate variability on the abundance of the sandy beach clam (Mesodesma mactroides) in the southwestern Atlantic. Journal of Coastal Research 33 (3): 531–536.CrossRefGoogle Scholar
  43. Matheron, G. 1965. La théorie des variables régionalisées et ses applications. Paris: Masson et Cie.Google Scholar
  44. McArdle, S., and A. McLachlan. 1991. Dynamics of the swash zone and effluent line on sandy beaches. Marine Ecology Progress Series 76: 91–99.CrossRefGoogle Scholar
  45. McArdle, S., and A. McLachlan. 1992. Sand beach ecology: Swash features relevant to the macrofauna. Journal of Coastal Research 8: 398–407.Google Scholar
  46. McLachlan, A. 1983. Sandy beach ecology-a review. In: Sandy beaches as ecosystems, eds. A. McLachlan and T. Erasmus, 321–380. The Hague, W. Junk.Google Scholar
  47. McLachlan, A. 1990. Dissipative beaches and macrofauna communities on exposed intertidal sands. Journal of Coastal Research 6: 57–71.Google Scholar
  48. McLachlan, A. 1998. Interactions between two species of Donax on a high energy beach: An experimental approach. Journal of Molluscan Studies 64 (4): 492–495.CrossRefGoogle Scholar
  49. McLachlan, A. 2001. Coastal beach ecosystems. In Encyclopedia of biodiversity, 741–751. Academic Press.Google Scholar
  50. McLachlan, A., and O. Defeo. 2017. The ecology of sandy shores. Academic Press.Google Scholar
  51. McLachlan, A., and A. Dorvlo. 2007. Global patterns in sandy beach macrobenthic communities: Biological factors. Journal of Coastal Research 23 (5): 1081–1087.CrossRefGoogle Scholar
  52. McLachlan, A., and E. Jaramillo. 1995. Zonation on sandy beaches. Oceanography and Marine Biology: Annual Review 33: 305–335.Google Scholar
  53. Menge, B.A., and J.P. Sutherland. 1976. Species diversity gradients: Synthesis of the roles of predation, competition and spatial heterogeneity. The American Naturalist 110 (973): 351–369.CrossRefGoogle Scholar
  54. Odebrecht, C., L. Roig, V.T. García, and P.C. Abreu. 1995. Shellfish mortality and a red tide in southern Brazil. In Harmful marine algal blooms, ed. P. Lassus, 213–218. New York: Springer-Verlag.Google Scholar
  55. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2018. Vegan: Community ecology package.
  56. Ortega, L., E. Celentano, E. Delgado, and O. Defeo. 2016. Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Marine Ecology Progress Series 545: 203–213.CrossRefGoogle Scholar
  57. Penchaszadeh, P.E., and S.R. Olivier. 1975. Ecología de una población de “berberecho” (Donax hanleyanus) en Villa Gesell, Argentina. Malacologia 15: 133–146.Google Scholar
  58. Peterson, C.H. 1991. Intertidal zonation of marine invertebrates in sand and mud. American Scientist 79: 236–249.Google Scholar
  59. Quillien, N., M.C. Nordström, O. Gauthier, E. Bonsdorff, Y.M. Paulet, and J. Grall. 2015. Effects of macroalgal accumulations on the variability in zoobenthos of high-energy macrotidal sandy beaches. Marine Ecology Progress Series 522: 97–114.CrossRefGoogle Scholar
  60. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL
  61. Rodil, I.F., and M. Lastra. 2004. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science 61 (1): 37–44.CrossRefGoogle Scholar
  62. Rodil, I.F., P. Lucena-Moya, H. Jokinen, V. Ollus, H. Wennhage, A. Villnäs, and A. Norkko. 2017. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates. PLoS One 12 (2): e0172160.CrossRefGoogle Scholar
  63. Rodil, I.F., P. Lucena-Moya, and M. Lastra. 2018. The importance of environmental and spatial factors in the metacommunity dynamics of exposed sandy beach benthic invertebrates. Estuaries and Coasts 41 (1): 206–217.CrossRefGoogle Scholar
  64. Ruiz-Delgado, M.C., M.J. Reyes-Martínez, J.E. Sánchez-Moyano, J. López-Pérez, and F.J. García-García. 2015. Distribution patterns of supralittoral arthropods: Wrack deposits as a source of food and refuge on exposed sandy beaches (SW Spain). Hydrobiologia 742 (1): 205–219.CrossRefGoogle Scholar
  65. Schlacher, T.A., S. Lucrezi, R.M. Connolly, C.H. Peterson, B.L. Gilby, B. Maslo, A.D. Olds, S.J. Walker, J.X. Leon, C.M. Huijbers, M.A. Weston, A. Turra, G.A. Hyndes, R.A. Holt, and D.S. Schoeman. 2016. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuarine, Coastal and Shelf Science 169: 56–73.CrossRefGoogle Scholar
  66. Schmitt, W. L., J. C. McCain, and E. S. Davidson. 1973. Decapoda I. Brachyura I. Family Pinnotheridae. In Crustaceorum Catalogus, ed. H. E. Gruner, and L. B. Holthuis, 32–37. The Hague, W. Junk.Google Scholar
  67. Servicio de Hidrografía Naval (SHN). 2009. Tablas de Marea. Buenos Aires: Departamento de Artes Gráficas del Servicio de Hidrografía Naval, Publicación H-610, pp. 140–144.Google Scholar
  68. Sunday, J.M., G.T. Pecl, S. Frusher, A.J. Hobday, N. Hill, N.J. Holbrook, G.J. Edgar, R. Stuart-Smith, N. Barrett, T. Wernberg, R.A. Watson, D.A. Smale, E.A. Fulton, D. Slawinski, M. Feng, B.T. Radford, P.A. Thompson, and A.E. Bates. 2015. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters 18 (9): 944–953.CrossRefGoogle Scholar
  69. Syväranta, J., A. Lensu, T.J. Marjomäki, S. Oksanen, and R.I. Jones. 2013. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8 (2): e56094.CrossRefGoogle Scholar
  70. Takeda, S., S. Tamura, and M. Washio. 1997. Relationship between the pea crab Pinnixa tumida and its endobenthic holothurian host Paracaudina chilensis. Marine Ecology Progress Series 149: 143–154.CrossRefGoogle Scholar
  71. Thompson, G.A., and M.A. Sánchez De Bock. 2009. Influence of beach morphodynamics on the bivalve Donax hanleyanus and Mesodesma mactroides populations in Argentina. Marine Ecology 30 (2): 198–211.CrossRefGoogle Scholar
  72. Underwood, A.J., and E.J. Denley. 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In Ecological communities: Conceptual issues and evidence, ed. D.R. Strong, D. Simberloff, and A.B. Thistle, 151–180. Princeton, N.J: Princeton University Press.CrossRefGoogle Scholar
  73. Van Tomme, J., S. Degraer, and M. Vincx. 2014. Role of predation on sandy beaches: Predation pressure and prey selectivity estimated by laboratory experiments. Journal of Experimental Marine Biology and Ecology 451: 115–121.CrossRefGoogle Scholar
  74. Vázquez, N., S. Fiori, I. Arzul, M.C. Carcedo, and F. Cremonte. 2016. Mass mortalities affecting populations of the yellow clam, Amarilladesma mactroides, along its geographic range. Journal of Shellfish Research 35 (4): 739–745.CrossRefGoogle Scholar
  75. Vega, V., S. Rodríguez, and M. Valente. 1989. Shallow marine and fluvial environments of quaternary deposits in Pehuen-Có beach, Buenos Aires, Argentina. Quaternary of South America and Antarctic Peninsula 7: 51–80.Google Scholar
  76. Venables, W.N., and B.D. Ripley. 2002. Modern applied statistics with S. New York: Springer.CrossRefGoogle Scholar
  77. Williams, A.B. 1984. Shrimps, lobsters and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Washington: Smithsonian Institution.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  1. 1.Instituto Argentino de OceanografíaUniversidad Nacional del Sur, CONICET, IADOBahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Research Division Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  4. 4.Departamento de Geografía y TurismoUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations