Advertisement

Effects of Roughness Loss on Reef Hydrodynamics and Coastal Protection: Approaches in Latin America

  • Juan D. Osorio-CanoEmail author
  • Juan C. Alcérreca-Huerta
  • Ismael Mariño-Tapia
  • Andrés F. Osorio
  • Cesar Acevedo-Ramírez
  • Cecilia Enriquez
  • Mirella Costa
  • Pedro Pereira
  • Edgar Mendoza
  • Mireille Escudero
  • Alejandro Astorga-Moar
  • José López-González
  • Christian M. Appendini
  • Rodolfo Silva
  • Hocine Oumeraci
Special Issue: Integrating Ecosystems and Coastal Engineering Practice

Abstract

Reefs are known to provide coastal protection and important ecosystem services for many coastlines around the world. Physical processes such as wave damping, sediment transport and nearshore hydrodynamics are closely related to the coastal protection services provided by reefs. The steep-fronted bathymetries of reefs cause abrupt wave transformations and wave damping alongshore, while reef roughness has an important contribution to coastal protection. Five Latin-American case studies are presented to illustrate the coastal protection offered by reefs and their contribution to wave damping. The methodologies applied (e.g. numerical modelling, field measurements) and reef conditions (e.g. reef degradation scenarios and contribution of reef roughness) are listed. Considerable efforts have been made towards diagnosing, understanding and modelling the hydrodynamic transformations induced by reefs. Based on physical and field surveys, roughness and friction parameters were derived in order to implement calibrated and validated numerical models. Discussion on the advantages and disadvantages of the different models applied in the study cases is provided as well as on the needs of highlighting physical processes and the analysis of reef hydrodynamics for supporting appropriate ecosystem-based management.

Keywords

Coral reefs Reef roughness Ecosystem services Coastal protection Wave damping Numerical modelling 

Notes

Acknowledgements

We would like to thank Dr. Garza-Pérez for providing the digital bathymetry of Akumal Bay.

Funding Information

The financial support was provided by the EXCEED-Swindon project framework. The first author was supported by COLCIENCIAS funding the developed PhD thesis project.

References

  1. Acevedo-Ramírez, C. 2015. Análisis de la complejidad arrecifal con métodos acústicos y su efecto en la hidrodinámica. MSc. Thesis, CINVESTAV- Merida.Google Scholar
  2. Alvarez-Filip, Lorenzo, Nicholas K. Dulvy, Jennifer A. Gill, Isabelle M. Côté, and Andrew R. Watkinson. 2009. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences 276 (1669): 3019–3025.  https://doi.org/10.1098/rspb.2009.0339.Google Scholar
  3. Appendini, Christian M., Alec Torres-Freyermuth, Paulo Salles, Jose López-González, and E. Tonatiuh Mendoza. 2014. Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast. Journal of Climate 27 (4): 1619–1632.  https://doi.org/10.1175/JCLI-D-13-00206.1.Google Scholar
  4. Arkema, Katie K., Sarah C. Abramson, and Bryan M. Dewsbury. 2006. Marine ecosystem based management- from characterization to implementation. Frontiers in Ecology and the Environment 4 (10): 525–532. https://doi.org/10.1890/1540-9295(2006)4[525:memfct]2.0.co;2.Google Scholar
  5. Astorga-Moar, A. 2017. Variación en la dinámica litoral bajo escenarios predictivos de degradación de arrecifes. MSc. thesis, Instituto de Ingeniería – Universidad Nacional Autónoma de México, México.Google Scholar
  6. Aswani, Shankar, Patrick Christie, Nyawira A. Muthiga, Robin Mahon, Jurgenne H. Primavera, Lori A. Cramer, Edward B. Barbier, Elise F. Granek, Chris J. Kennedy, Eric Wolanski, and Sally Hacker. 2012. The way forward with ecosystem-based management in tropical contexts: Reconciling with existing management systems. Marine Policy 36 (1): 1–10.  https://doi.org/10.1016/j.marpol.2011.02.014.Google Scholar
  7. Bagstad, Kenneth J, Ferdinando Villa, Gary W Johnson, and Brian Voigt. 2011. ARIES (artificial intelligence for ecosystem services): A guide to models and data, version 1.0. Aries report series n.1.  https://doi.org/10.1007/s13398-014-0173-7.2.
  8. Baldock, T.E., A. Golshani, D.P. Callaghan, M.I. Saunders, and P.J. Mumby. 2014. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine Pollution Bulletin 83 (1): 155–164.  https://doi.org/10.1016/j.marpolbul.2014.03.058.Google Scholar
  9. Beck, Michael W., Iñigo J. Losada, Pelayo Menéndez, Borja G. Reguero, Pedro Díaz-Simal, and Felipe Fernández. 2018. The global flood protection savings provided by coral reefs. Nature Communications 9 (1): 2186.  https://doi.org/10.1038/s41467-018-04568-z.Google Scholar
  10. Borsje, Bas W., Bregje K. van Wesenbeeck, Frank Dekker, Peter Paalvast, Tjeerd J. Bouma, Marieke M. van Katwijk, and Mindert B. de Vries. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering 37 (2): 113–122.  https://doi.org/10.1016/j.ecoleng.2010.11.027.Google Scholar
  11. Boumans, Roelof, Joe Roman, Irit Altman, and Les Kaufman. 2015. The multiscale integrated model of ecosystem services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosystem Services 12: 30–41.  https://doi.org/10.1016/j.ecoser.2015.01.004.Google Scholar
  12. Buckley, Mark L., Ryan J. Lowe, Jeff E. Hansen, and Ap R. Van Dongeren. 2016. Wave setup over a fringing reef with large bottom roughness. Journal of Physical Oceanography 46 (8): 2317–2333.  https://doi.org/10.1175/JPO-D-15-0148.1.Google Scholar
  13. Buckley, Mark L., R.J. Lowe, J.E. Hansen, A.R. van Dongeren, and C.D. Storlazzi. 2018. Mechanisms of wave-driven water level variability on reef-fringed coastlines. Journal of Geophysical Research: Oceans 123 (5): 3811–3831.  https://doi.org/10.1029/2018JC013933.Google Scholar
  14. Burcharth, Hans F., Barbara Zanuttigh, Thomas Lykke Andersen, Javier L. Lara, Gosse Jan Steendam, Piero Ruol, Philippe Sergent, et al. 2015. Innovative engineering solutions and best practices to mitigate coastal risk. In Coastal risk Management in a Changing Climate, 55–170. Elsevier.  https://doi.org/10.1016/B978-0-12-397310-8.00003-8.
  15. Burke, L., K. Reytar, M. Spalding, and A. Perry. 2011. Reefs at risk revisited. Washington: World Resources Institute.Google Scholar
  16. Burns, J.H.R., D. Delparte, R.D. Gates, and M. Takabayashi. 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3: e1077.  https://doi.org/10.7717/peerj.1077.Google Scholar
  17. Casella, Elisa, Antoine Collin, Daniel Harris, Sebastian Ferse, Sonia Bejarano, Valeriano Parravicini, James L. Hench, and Alessio Rovere. 2017. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36 (1): 269–275.  https://doi.org/10.1007/s00338-016-1522-0.Google Scholar
  18. Cerdeira-Estrada, S, T Heege, M Kolb, S Ohlendorf, A Uribe, A Müller, R Garza, et al. 2012. Benthic habitat and bathymetry mapping of shallow waters in Puerto Morelos reefs using remote sensing with a physics based data processing. In IEEE international geoscience and remote sensing symposium, 4383–4386.Google Scholar
  19. Cheriton, Olivia M., Curt D. Storlazzi, and Kurt J. Rosenberger. 2016. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding. Journal of Geophysical Research: Oceans 121 (5): 3121–3140.  https://doi.org/10.1002/2015JC011231.Google Scholar
  20. Cialone, Mary A, and Jane Mckee Smith. 2007. Wave transformation modeling with bottom friction applied to south east Oahu reefs. 10th International workshop on Wave Hindcasting and Forecasting & Coastal Hazard Assessment: 1–12.Google Scholar
  21. Coronado, C., J. Candela, R. Iglesias-Prieto, J. Sheinbaum, M. López, and F.J. Ocampo-Torres. 2007. On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs 26 (1): 149–163.  https://doi.org/10.1007/s00338-006-0175-9.Google Scholar
  22. Costa, Mirella B.S.F., Moacyr Araújo, Tereza C.M. Araújo, and Eduardo Siegle. 2016. Influence of reef geometry on wave attenuation on a Brazilian coral reef. Geomorphology 253: 318–327.  https://doi.org/10.1016/j.geomorph.2015.11.001.Google Scholar
  23. Ferrari, Renata, Will F. Figueira, Morgan S. Pratchett, Tatiana Boube, Arne Adam, Tania Kobelkowsky-Vidrio, Steve S. Doo, Trisha Brooke Atwood, and Maria Byrne. 2017. 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports 7 (1): 1–9.  https://doi.org/10.1038/s41598-017-16408-z.Google Scholar
  24. Ferrario, Filippo, Michael W. Beck, Curt D. Storlazzi, Fiorenza Micheli, Christine C. Shepard, and Laura Airoldi. 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications 5 (1): 3794.  https://doi.org/10.1038/ncomms4794.Google Scholar
  25. Ferreira, B P, and M A Maida. 2006. Monitoring Brazilian coral reefs: Status and perspectives. Brasília, MMA/SBF. In Biodiversity Series, No. 18, 250 pp.Google Scholar
  26. Figueira, Will, Renata Ferrari, Elyse Weatherby, Augustine Porter, Steven Hawes, and Maria Byrne. 2015. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sensing 7 (12): 16883–16900.  https://doi.org/10.3390/rs71215859.Google Scholar
  27. Figueroa-Zavala, B, and I Penié Rodríguez. 2014. Estado actual de los ecosistemas y especies clave de Akumal. Resultados y temas relevantes derivados de los estudios y estrategias de protección ambiental implementadas por los Programas de Conservación del Centro Ecológico Akumal. Google Scholar
  28. FINEP/UFPE. 2009. Monitoramento Ambiental Integrado – MAI-PE. Relatório Técnico – Vols. 1, 2 e 3. Financiadora de Estudos e Projetos – FINEP. Recife, 485 pp.Google Scholar
  29. Franklin, Gemma. 2015. Effects of roughness on wave-dominated coral reef environments. PhD Thesis CINVESTAV-Mérida.Google Scholar
  30. Franklin, Gemma, Ismael Mariño-Tapia, and Alec Torres-Freyermuth. 2013. Effects of reef roughness on wave setup and surf zone currents. Journal of Coastal Research 165: 2005–2010.  https://doi.org/10.2112/SI65-339.1.Google Scholar
  31. Franklin, Gemma, Alec Torres-Freyermuth, Gabriela Medellin, María Eugenia Allende-Arandia, and Christian M. Appendini. 2018. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico). Natural Hazards and Earth System Sciences 18 (4): 1247–1260.  https://doi.org/10.5194/nhess-18-1247-2018.Google Scholar
  32. Garza-Pérez, J.R., A. Lehmann, and J.E. Arias-González. 2004. Spatial prediction of coral reef habitats: Integrating ecology with spatial modeling and remote sensing. Marine Ecology Progress Series 269: 141–152.  https://doi.org/10.3354/meps269141.Google Scholar
  33. Garza-Pérez, J.R., M. Mata-Lara, and S. García-Guzmán. 2010. Reporte de Caracterización y Evaluación de Estado de Condición Arrecifal. Akumal: Q. Roo.Google Scholar
  34. Gil, Michael A., Bobbie Renfro, Baruch Figueroa-Zavala, Iván Penié, and Kenneth H. Dunton. 2015. Rapid tourism growth and declining coral reefs in Akumal, Mexico. Marine Biology 162 (11): 2225–2233.  https://doi.org/10.1007/s00227-015-2748-z.Google Scholar
  35. Gomes, Gabriel Dannunzio, and Alex Costa da Silva. 2014. Coastal Erosion case at Candeias Beach (NE-Brazil). Journal of Coastal Research 71: 30–40.  https://doi.org/10.2112/SI71-004.1.Google Scholar
  36. Grady, A.E., L.J. Moore, C.D. Storlazzi, E. Elias, and M.A. Reidenbach. 2013. The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport. Geophysical Research Letters 40 (12): 3096–3101.  https://doi.org/10.1002/grl.50577.Google Scholar
  37. Grant, William D., and Ole Secher Madsen. 1982. Movable bed roughnes in unsteady oscillatory flow. Journal of Geophysical Research 87 (C1): 469–481.Google Scholar
  38. Guarderas, Paulina, Sally D. Hacker, and Jane Lubchenco. 2008. Current status of marine protected areas in Latin America and the Caribbean. Conservation Biology 22 (6): 1630–1640.  https://doi.org/10.1111/j.1523-1739.2008.01023.x.Google Scholar
  39. Innocentini, Valdir, Fernando Arantes, Raquel Ferreira, and Roberta Micheleto. 2005. A Agitação Marítima No Litoral Nordeste Do Brasil Associada Aos Distúrbios Africanos De Leste. Revista Brasileira de Meteorologia 20: 367–374.Google Scholar
  40. Jackson, Bethanna, Timothy Pagella, Fergus Sinclair, Barbara Orellana, Alex Henshaw, Brian Reynolds, Neil Mcintyre, Howard Wheater, and Amy Eycott. 2013. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landscape and Urban Planning 112: 74–88.  https://doi.org/10.1016/j.landurbplan.2012.12.014.Google Scholar
  41. Jacobsen, Niels G., David R. Fuhrman, and Jørgen Fredsøe. 2012. A wave generation toolbox for the open-source CFD library: OpenFoam®. International Journal for Numerical Methods in Fluids 70 (9): 1073–1088.  https://doi.org/10.1002/fld.2726.Google Scholar
  42. Kareiva, Peter, Heather Tallis, Taylor H. Ricketts, Gretchen C. Daily, and Stephen Polasky. 2011. Natural capital: Theory and practice of mapping ecosystem services. Oxford: Oxford University Press.Google Scholar
  43. Kim, Kwanmok, Peter C Frederick, and Vincent Lecours. 2018. Using 3D micro-Geomorphometry to quantify interstitial spaces of an oyster cluster. In 5th intern Conf, ISG. Geomorphometry 2018.Google Scholar
  44. Labiosa, W.B., W.M. Forney, A.-M. Esnard, D. Mitsova-Boneva, R. Bernknopf, P. Hearn, D. Hogan, L. Pearlstine, D. Strong, H. Gladwin, and E. Swain. 2013. An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The ecosystem portfolio model. Environmental Modelling & Software 41: 210–222.  https://doi.org/10.1016/j.envsoft.2012.10.012.Google Scholar
  45. Laborel, J. 1965. Note préliminaire sur lês récifs de grés et récifs de coraux dans lê Nord- Est brésilien. Recueil des Travaux de la Station Marine d’Endoume 37: 341–344.Google Scholar
  46. Lamberti, Alberto, R. Archetti, M. Kramer, D. Paphitis, C. Mosso, and M. Di Risio. 2005. European experience of low crested structures for coastal management. Coastal Engineering 52 (10-11): 841–866.  https://doi.org/10.1016/j.coastaleng.2005.09.010.Google Scholar
  47. López-Victoria, Mateo, and Sven Zea. 2004. Storm-mediated coral colonization by an excavating Caribbean sponge. Climate Research 26: 251–256.  https://doi.org/10.3354/cr026251.Google Scholar
  48. Lowe, Ryan J., James L. Falter, Marion D. Bandet, Geno Pawlak, Marlin J. Atkinson, Stephen G. Monismith, and Jeffrey R. Koseff. 2005. Spectral wave dissipation over a barrier reef. Journal of Geophysical Research 110 (C4): 1–16.  https://doi.org/10.1029/2004JC002711.Google Scholar
  49. Lowe, Ryan J., James L. Falter, Jeffrey R. Koseff, Stephen G. Monismith, and Marlin J. Atkinson. 2007. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation. Journal of Geophysical Research 112 (C5): 1–14.  https://doi.org/10.1029/2006JC003605.Google Scholar
  50. Madsen, Secher Ole, Poon Ying-Keung, and Hans Graber. 1988. Spectral wave attenuation by bottom friction: Theory. Coastal Engineering Proceedings 1: 492–504. https://doi.org/10.9753/icce.v21.%p.Google Scholar
  51. Maida, MA, and Beatrice Padovani Ferreira. 1997. Coral reefs of Brazil : Overview and Field guide. 8th Int Coral Reef Sym: 263–273.Google Scholar
  52. Marriott, M.J., and R. Jayaratne. 2010. Hydraulic roughness – Links between Manning’s coefficient, Nikuradse’s equivalent sand roughness and bed grain size. In Proceedings of advances in computing and technology, 27–32.Google Scholar
  53. Mil-Homens, João, Roshanka Ranasinghe, J.S.M. van Thiel de Vries, and M.J.F. Stive. 2013. Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coastal Engineering 75: 29–39.  https://doi.org/10.1016/j.coastaleng.2013.01.004.Google Scholar
  54. Monismith, Stephen G., Justin S. Rogers, David Koweek, and Robert B. Dunbar. 2015. Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters 42 (10): 4063–4071.  https://doi.org/10.1002/2015GL063804.Google Scholar
  55. Morris, Rebecca L., Teresa M. Konlechner, Marco Ghisalberti, and Stephen E. Swearer. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biology 24 (5): 1827–1842.  https://doi.org/10.1111/gcb.14063.Google Scholar
  56. Muñoz Sevilla, Norma Patricia, and Maxime Le Bail. 2017. Latin American and Caribbean regional perspective on ecosystem based management (EBM) of large marine ecosystems goods and services. Environmental Development 22: 9–17.  https://doi.org/10.1016/j.envdev.2017.01.006.Google Scholar
  57. Narayan, Siddharth, Michael W. Beck, Borja G. Reguero, Iñigo J. Losada, Bregje Van Wesenbeeck, Nigel Pontee, James N. Sanchirico, Jane Carter Ingram, Glenn Marie Lange, and Kelly A. Burks-Copes. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11 (5): 1–17.  https://doi.org/10.1371/journal.pone.0154735.Google Scholar
  58. Neves, Claudio F., and Dieter Muehe. 1995. Potential impacts of sea-level rise on the metropolitan region of Recife, Brazil. Journal of Coastal Research: 116–131.Google Scholar
  59. Norcross, Zoe M., Charles H. Fletcher, and Mark Merrifield. 2002. Annual and interannual changes on a reef-fringed pocket beach: Kailua Bay, Hawaii. Marine Geology 190 (3-4): 553–580.  https://doi.org/10.1016/S0025-3227(02)00481-4.Google Scholar
  60. Osorio-Cano, Juan D., Juan C. Alcérreca-Huerta, Andrés F. Osorio, and Hocine Oumeraci. 2018. CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs 37 (4): 1093–1108.  https://doi.org/10.1007/s00338-018-1736-4.Google Scholar
  61. Osorio-Cano, Juan D., A.F. Osorio, and D.S. Peláez-Zapata. 2019a. Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering 130: 282–295.  https://doi.org/10.1016/j.ecoleng.2017.07.015.Google Scholar
  62. Osorio-Cano, Juan D., Andrés F. Osorio, Juan C. Alcérreca-Huerta, and Hocine Oumeraci. 2019b. Drag and inertia forces on a branched coral colony of Acropora palmata. Journal of Fluids and Structures 88: 31–47.  https://doi.org/10.1016/j.jfluidstructs.2019.04.001.
  63. Pearson, S.G., C.D. Storlazzi, A.R. van Dongeren, M.F.S. Tissier, and A.J.H.M. Reniers. 2017. A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts. Journal of Geophysical Research: Oceans 122 (12): 10099–10117.  https://doi.org/10.1002/2017JC013204.Google Scholar
  64. Pereira, P S, and AV Nogueira Neto. 2015. Caracterização do clima de ondas ao largo da costa de Pernambuco a partir de dados da PNBoia Recife. In XI Simpósio sobre Ondas, Marés, Engenharia Oceânica e Oceanografia por Satélite, Arraial do Cabo, v. único.Google Scholar
  65. Perry, A.E., W.H. Schofield, and P.N. Joubert. 1969. Rough wall turbulent boundary layers. Journal of Fluid Mechanics 37 (2): 383–413.  https://doi.org/10.1017/S0022112069000619.Google Scholar
  66. Pianca, Cássia, Piero Luigi F. Mazzini, and Eduardo Siegle. 2010. Brazilian offshore wave climate based on NWW3 reanalysis. Brazilian Journal of Oceanography 58 (1): 53–70.  https://doi.org/10.1590/S1679-87592010000100006.Google Scholar
  67. Qin, Jie, Jochen Aberle, Pierre-Yves Henry, Teng Wu, and Deyu Zhong. 2019. Statistical significance of spatial correlation patterns in armoured gravel beds. Journal of Hydraulic Research 57 (1): 90–106.  https://doi.org/10.1080/00221686.2018.1459894.Google Scholar
  68. Quataert, Ellen, Curt Storlazzi, Arnold van Rooijen, Olivia Cheriton, and Ap van Dongeren. 2015. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters 42 (15): 6407–6415.  https://doi.org/10.1002/2015GL064861.Google Scholar
  69. Reguero, Borja G., Michael W. Beck, Vera N. Agostini, Philip Kramer, and Boze Hancock. 2018. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. Journal of Environmental Management 210: 146–161.  https://doi.org/10.1016/j.jenvman.2018.01.024.Google Scholar
  70. Rinkevich, Baruch. 2005. Conservation of coral reefs through active restoration measures: Recent approaches and last decade Progress. Environmental Science & Technology 39 (12): 4333–4342.  https://doi.org/10.1021/es0482583.Google Scholar
  71. Roberts, Harry H. 1980. Physical processes and sediment flux through reef-lagoon systems. Coastal Engineering: 946–962.Google Scholar
  72. Rogers, Justin S., Stephen G. Monismith, David A. Koweek, and Robert B. Dunbar. 2016. Wave dynamics of a Pacific atoll with high frictional effects. Journal of Geophysical Research: Oceans 121 (1): 350–367.  https://doi.org/10.1002/2015JC011170.Google Scholar
  73. Rosado-Torres, A, I Mariño-Tapia, and C Acevedo-Ramírez. 2017. Effects of submarine groundwater discharges on benthic cover and reef rugosity in Puerto Morelos, Quintana Roo. In 38th Scientific Conference:“Marine Science in a Changing Climate”. Association of Marine Laboratories of the Caribbean 22–26 May. Mérida, Yucatán, México.Google Scholar
  74. Ruiz de Alegria-Arzaburu, Amaia, Ismael Mariño-Tapia, Cecilia Enriquez, Rodolfo Silva, and Mariana González-Leija. 2013. The role of fringing coral reefs on beach morphodynamics. Geomorphology 198: 69–83.  https://doi.org/10.1016/j.geomorph.2013.05.013.Google Scholar
  75. Sánchez, Juan A. 1995. Benthic communities and geomorphology of the Tesoro Island coral reef, Colombian Caribbean. Anales del Instituto de Investigaciones Marinas de Punta Betín 24: 55–77.Google Scholar
  76. Sharp, Editors Richard, Rebecca Chaplin-kramer, Spencer Wood, Anne Guerry, Heather Tallis, Taylor Ricketts, Contributing Authors, et al. 2016. InVEST +VERSION+ User’s Guide. The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, andWorldWildlife Fund.Google Scholar
  77. Sheppard, Charles, David J. Dixon, Michael Gourlay, Anne Sheppard, and Rolph Payet. 2005. Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuarine, Coastal and Shelf Science 64 (2-3): 223–234.  https://doi.org/10.1016/j.ecss.2005.02.016.Google Scholar
  78. Silva, Rodolfo, M.A. Losada, and P. Salles. 2006a. Modelling linear wave transformation induced by dissipative structures—Random waves. Ocean Engineering 33 (16): 2174–2194.  https://doi.org/10.1016/j.oceaneng.2005.11.008.Google Scholar
  79. Silva, Rodolfo, Edgar Mendoza, and M.A. Losada. 2006b. Modelling linear wave transformation induced by dissipative structures—Regular waves. Ocean Engineering 33 (16): 2150–2173.  https://doi.org/10.1016/j.oceaneng.2005.11.007.Google Scholar
  80. Silva, Rodolfo, Gabriel Ruiz Martinez, Ismael Mariño-Tapia, Gregorio Posada Vanegas, Edgar Mendoza Baldwin, and Edgar Escalante Mancera. 2012. Manmade vulnerability of the Cancun Beach system: The case of hurricane Wilma. CLEAN: Soil, Air, Water 40 (9): 911–919.  https://doi.org/10.1002/clen.201100677.Google Scholar
  81. Silva, Rodolfo, Edgar Mendoza, Ismael Mariño-Tapia, María Luisa Martínez, and Edgar Escalante. 2016. An artificial reef improves coastal protection and provides a base for coral recovery. Journal of Coastal Research 75 (sp1): 467–471.  https://doi.org/10.2112/SI75-094.1.Google Scholar
  82. Silva, Rodolfo, Debora Lithgow, Luciana S. Esteves, María Luisa Martínez, Patricia Moreno-Casasola, Raúl Martell, Pedro Pereira, et al. 2017. Coastal risk mitigation by green infrastructure in Latin America. Proceedings of the Institution of Civil Engineers - Maritime Engineering MAEN-2016: 1–16.  https://doi.org/10.1680/jmaen.2016.13.Google Scholar
  83. Smith, Martin D., Jordan M. Slott, Dylan McNamara, and A. Brad Murray. 2009. Beach nourishment as a dynamic capital accumulation problem. Journal of Environmental Economics and Management 58 (1): 58–71.  https://doi.org/10.1016/j.jeem.2008.07.011.Google Scholar
  84. Sollitt, Charles K., and Ralph H. Cross. 1972. Wave transmission through permeable breakwaters. In Coastal Engineering 1972, 1827–1846. New York, NY: American Society of Civil Engineers.  https://doi.org/10.1061/9780872620490.106.Google Scholar
  85. Spalding, Mark D., Anna L. McIvor, Michael W. Beck, Evamaria W. Koch, Iris Möller, Denise J. Reed, Pamela Rubinoff, Thomas Spencer, Trevor J. Tolhurst, Ty V. Wamsley, Bregje K. van Wesenbeeck, Eric Wolanski, and Colin D. Woodroffe. 2014. Coastal ecosystems: A critical element of risk reduction. Conservation Letters 7 (3): 293–301.  https://doi.org/10.1111/conl.12074.Google Scholar
  86. Storlazzi, C.D., E. Elias, M.E. Field, and M.K. Presto. 2011. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs 30 (S1): 83–96.  https://doi.org/10.1007/s00338-011-0723-9.Google Scholar
  87. Storlazzi, Curt, Peter Dartnell, Gerald A. Hatcher, and Ann E. Gibbs. 2016. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs 35 (3): 889–894.  https://doi.org/10.1007/s00338-016-1462-8.Google Scholar
  88. Storlazzi, Curt D., Borja G. Reguero, Erik Lowe, James B. Shope, Ann Gibbs, Mike Beck, and Barry Nickel. 2017. Rigorously valuing the role of coral reefs in coastal protection: An example from Maui, Hawaii, USA. Coastal Dynamics 2017: 665–674.Google Scholar
  89. Villa, Ferdinando, Ken Bagstad, Gary Johnson, and Brian Voigt. 2011. Scientific instruments for climate change adaptation: Estimating and optimizing the efficiency of ecosystem service provision. Economia Agraria y Recursos Naturales 11 (1): 83–98.  https://doi.org/10.7201/earn.v11i1.14536.Google Scholar
  90. Yap, Helen T. 2000. The case for restoration of tropical coastal ecosystems. Ocean & Coastal Management 43 (8-9): 841–851.  https://doi.org/10.1016/S0964-5691(00)00061-2.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  • Juan D. Osorio-Cano
    • 1
    Email author
  • Juan C. Alcérreca-Huerta
    • 2
  • Ismael Mariño-Tapia
    • 3
  • Andrés F. Osorio
    • 1
  • Cesar Acevedo-Ramírez
    • 3
  • Cecilia Enriquez
    • 4
  • Mirella Costa
    • 5
  • Pedro Pereira
    • 6
  • Edgar Mendoza
    • 7
  • Mireille Escudero
    • 7
  • Alejandro Astorga-Moar
    • 7
  • José López-González
    • 8
  • Christian M. Appendini
    • 8
  • Rodolfo Silva
    • 7
  • Hocine Oumeraci
    • 9
  1. 1.Facultad de Minas-Departamento de Geociencias y Medio Ambiente - Grupo OCEANICOSUniversidad Nacional de Colombia - Sede MedellínMedellínColombia
  2. 2.CONACYT-ECOSUR. Department of Systematics and Aquatic EcologyChetumalMexico
  3. 3.Coastal Processes Laboratory, CINVESTAV-MeridaMeridaMexico
  4. 4.Faculty of Sciences, UMDI-SisalUniversidad Nacional Autonoma de MexicoMexico cityMexico
  5. 5.Coastal Dynamics Laboratory, Oceanographic InstituteUniversity of Sao PauloSao PauloBrazil
  6. 6.Geological Oceanography Lab., Oceanography DepartmentPernambuco Federal UniversityRecifeBrazil
  7. 7.Engineering InstituteNational Autonomous University of MexicoMexico CityMexico
  8. 8.Laboratory of Engineering and Coastal Processes, Engineering InstituteNational Autonomous University of MexicoSisalMexico
  9. 9.Leichtweiß Institute for Hydraulic Engineering and Water ResourcesTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations