Advertisement

Anthropogenic Impact on Zostera noltei Seagrass Meadows (NW Iberian Peninsula) Assessed by Carbon and Nitrogen Stable Isotopic Signatures

  • M. RománEmail author
  • E. Fernández
  • J. Zamborain-Mason
  • G. Méndez
Article

Abstract

Seagrass meadows provide valuable ecosystem services for human well-being. They are threatened by increasing human development on coastal areas, which results in eutrophication and ecosystem degradation. The negative effects of anthropogenic pressures on Zostera noltei meadows in NW Spain are unknown. This study aims to explore the relationship between watershed human development (i.e., the demographic temporal evolution and land cover indicators of human pressure) and the C and N isotopic signatures determined in Z. noltei seagrass meadows located in the related estuarine areas. We measured δ15N, δ13C, and the C:N content of sediment cores, Z. noltei leaves, and epiphytes collected from three seagrass meadows located at NW Iberian Peninsula characterized by well-differentiated watersheds in terms of the intensity of the anthropogenic pressures (Caldebarcos, Lourizán, and A Ramallosa). Ages and sedimentation rates were estimated by 210Pb/137Cs dating of one sediment core from the A Ramallosa seagrass meadow, corresponding to the most populated and urbanized watershed. Magnitudes of anthropogenic pressure on the watersheds were determined by the analysis of historic demographic data and the quantification of land cover changes obtained from CORINE Land Cover database. The intense anthropogenic transformation observed in the A Ramallosa watershed resulted in increases of sedimentation rates in the Z. noltei meadow. δ15N and δ13C signatures revealed the effects of anthropogenic nitrogen inputs. Sediment δ15N was the variable that best performed as an early warning eutrophication indicator, whereas δ15N in Z. noltei and epiphytic material were less coupled to the magnitudes of artificial land and population density on watersheds.

Keywords

Zostera noltei N and C stable isotopes Anthropogenic impact Temporal evolution 

Notes

Acknowledgements

The authors thank Aida Ovejero Campos for her field support and Maria Lema for her help with isotopic analyses.

Funding Information

This study was funded by the Ministry of Economy and Competitiveness through project REIMAGE (grants CTM2011-30155-C03-01 and CTM2011-30155-C03- 02). M. Román was supported by a PhD fellowship from the Xunta de Galicia.

References

  1. Alejo, I., M.I. de Ramón, M.A. Nombela, M.J. Reigosa, and F. Vilas. 1990. Complejo intermareal de A Ramallosa (Bahía de Baiona, Pontevedra). Ecología y evolución. Thalassas 8: 45–56.Google Scholar
  2. Alexandre, A., J. Silva, T.J. Bouma, and R. Santos. 2011. Inorganic nitrogen uptake kinetics and whole-plant nitrogen budget in the seagrass Zostera noltii. J. Exp. Mar. Bio. Ecol. 401 (1-2): 7–12.  https://doi.org/10.1016/j.jembe.2011.03.008.CrossRefGoogle Scholar
  3. Alonso, M., Remondo, J., Bonachea, J., Fuffa, E., Cendrero, A., 2015. Datación e interpretación de la sedimentación reciente en estuarios mediante la técnica de 210Pb en exceso. XIV Reunión Nacional de Cuaternario, Granada 2015. http://geoserver.ugr.es/aequa15/wp-content/uploads/2015/06/S09-05.pdf. Accessed 15 June 2018.
  4. Apostolaki, E.T., S. Vizzini, and I. Karakassis. 2012. Leaf vs. epiphyte nitrogen uptake in a nutrient enriched Mediterranean seagrass (Posidonia oceanica) meadow. Aquatic Botany 96 (1): 58–62.  https://doi.org/10.1016/j.aquabot.2011.09.008.CrossRefGoogle Scholar
  5. Baeta, A., I. Valiela, F. Rossi, R. Pinto, P. Richard, N. Niquil, and J. C. Marques. 2009. Eutrophication and trophic structure in response to the presence of the eelgrass Zostera noltii. Marine Biology 156 (10):2107–2120Google Scholar
  6. Barreira-González, P., V. González-Cascón, and J. Bosque-Sendra. 2012. Detección de errores temáticos en el CORINE Land Cover a través del estudio de cambios: Comunidad de Madrid (2000-2006). Estud. Geográficos 73 (272): 7–34.  https://doi.org/10.3989/estgeogr.201201.CrossRefGoogle Scholar
  7. Bode, A., M.T. Álvarez-Ossorio, and M. Varela. 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Marine Ecology Progress Series 318: 89–102.  https://doi.org/10.3354/meps318089.CrossRefGoogle Scholar
  8. Bode, A., M. Varela, and R. Prego. 2011. Continental and marine sources of organic matter and nitrogen for rías of northern Galicia (Spain). Marine Ecology Progress Series 437: 13–26.  https://doi.org/10.3354/meps09289.CrossRefGoogle Scholar
  9. Brandenberger, J.M., P. Louchouarn, and E.a. Crecelius. 2011. Natural and post-urbanization signatures of hypoxia in two basins of Puget Sound: historical reconstruction of redox sensitive metals and organic matter inputs. Aquat. Geochemistry 17 (4-5): 645–670.  https://doi.org/10.1007/s10498-011-9129-0.CrossRefGoogle Scholar
  10. Cacabelos, E., Quintas, P., Troncoso, J.S., Bárbara, I., García, V., Cremades, J., Garmendia, J.M., Puente, A., Recio, M., Ondiviela, B. (2015). Las praderas marinas de España: una visión general. La biodiver¬sidad de las praderas españolas: Atlántico norte. En: Ruiz, J.M., Guillén, J.E., Ramos Segura, A., Otero, M.M. (Eds.). Atlas de las praderas marinas de España. IEO/IEL/UICN, Murcia-Alicante-Málaga 87–91Google Scholar
  11. Carrol, J., and I. Lerche. 2003. Sedimentary processes: quantification using radionuclides. Oxford UK: Elsevier.Google Scholar
  12. Castro, P., and H. Freitas. 2010. Linking anthropogenic activities and eutrophication in estuaries: the need of reliable indicators. In Eutrophication: causes, consequences and control, ed. A. Ansari, S. Singh Gill, G. Lanza, and W. Rast. Dordrecht: Springer.  https://doi.org/10.1007/978-90-481-9625-8_13.Google Scholar
  13. Castro, P., I. Valiela, and H. Freitas. 2007a. The use of sedimentary %C, %N, δ15N, and Pb concentrations to assess historical changes in anthropogenic influence on Portuguese estuaries. Environmental Pollution 147 (3): 706–712.  https://doi.org/10.1016/j.envpol.2006.09.011.CrossRefGoogle Scholar
  14. Castro, P., I. Valiela, and H. Freitas. 2007b. Eutrophication in Portuguese estuaries evidenced by δ15N of macrophytes. Marine Ecology Progress Series 351: 43–51.  https://doi.org/10.3354/meps07173.CrossRefGoogle Scholar
  15. Catalá-Mateo, R., J. Bosque-Sendra, and W. Plata Rochas. 2008. Análisis de posibles errores en la base de datos Corine Land Cover (1990-2000) en la Comunidad de Madrid. Estud. geográficos 69: 81–104.  https://doi.org/10.3989/egeogr.2008.i264.80.Google Scholar
  16. Cornelisen, C.D., and F.I.M. Thomas. 2002. Ammonium uptake by seagrass epiphytes: isolation of the effects of water velocity using an isotope label. Limnology and Oceanography 47 (4): 1223–1229.  https://doi.org/10.4319/lo.2002.47.4.1223.CrossRefGoogle Scholar
  17. Cornelisen, C.D., and F.I.M. Thomas. 2006. Water flow enhances ammonium and nitrate uptake in a seagrass community. Marine Ecology Progress Series 312: 1–13.  https://doi.org/10.3354/meps312001.CrossRefGoogle Scholar
  18. Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3 (2–3): 53–92.  https://doi.org/10.1016/0016-7037(53)90001-5.CrossRefGoogle Scholar
  19. Dang, C., P.G. Sauriau, N. Savoye, N. Caill-Milly, P. Martinez, C. Millaret, J. Haure, and X. De Montaudouin. 2009. Determination of diet in Manila clams by spatial analysis of stable isotopes. Marine Ecology Progress Series 387: 167–177.  https://doi.org/10.3354/meps08100.
  20. Díaz, J.M., D. Aller, A. Martín, B. Barcia, and S. Pereira. 2007. Dúas perspectivas sobre a cartografía de coberturas e usos do solo en Galicia. Rev. Galega Econ. 16: 71–93.Google Scholar
  21. Doval, M.D., A. López, and M. Madriñán. 2016. Temporal variation and trends of inorganic nutrients in the coastal upwelling of the NW Spain (Atlantic Galician rias). Journal of Sea Research 108: 19–29.  https://doi.org/10.1016/j.seares.2015.12.006.CrossRefGoogle Scholar
  22. Duarte, C.M., Marbà, N. y Santos, R. 2004. What may cause loss of seagrasses?. In J. Borum, C.M. Duarte, D. Krause-Jensen, T.M. Greve (Eds.). European seagrasses: an introduction to monitoring and management. EU project monitoring and managing of European seagrass, (M&MS) (2004), pp. 24–32. Available at www.vliz.be/imisdocs/publications/67183.pdf. Accessed 1 May 2018.
  23. Dubois, S., N. Savoye, A. Grémare, M. Plus, K. Charlier, A. Beltoise, and H. Blanchet. 2012. Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: an elemental and isotopic study at the ecosystem space scale. Journal of Marine Systems 94: 64–73.  https://doi.org/10.1016/j.jmarsys.2011.10.009.CrossRefGoogle Scholar
  24. Evans, R.D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science 6 (3): 121–126.  https://doi.org/10.1016/S1360-1385(01)01889-1.CrossRefGoogle Scholar
  25. Evans, G., R. Prego, and J.E. Marshall. 2011. Organic matter in ria sediments: relevance of terrestial sources and temporal variations in rates of accumulation. Estuarine, Coastal and Shelf Science 94 (3): 246–254.  https://doi.org/10.1016/j.ecss.2011.07.001.CrossRefGoogle Scholar
  26. Fernández, E., X.A. Álvarez-Salgado, R. Beiras, A. Ovejero, and G. Méndez. 2016. Coexistence of urban uses and shellfish production in an upwelling-driven, highly productive marine environment: the case of the Ría de Vigo (Galicia, Spain). Regional Studies in Marine Science. 8: 362–370.  https://doi.org/10.1016/j.rsma.2016.04.002.CrossRefGoogle Scholar
  27. Finlay, J.C., and C. Kendall. 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Stable isotopes in ecology and environmental science, ed. R. Michener and K. Lajtha, 283–333. Malden MA USA: Blackwell publishing.CrossRefGoogle Scholar
  28. García-Orellana, J. and Sánchez-Cabeza, J., 2012. El 210Pb como trazador de procesos ambientales. In Sanchez-Cabeza, J., Díaz-Asencio, M., Ruiz-Fernández, A. (Eds). Radiocronología de Sedimentos Costeros Utilizando 210Pb: Modelos, Validación y Aplicaciones. Organismo internacional de energía atómica. Viena. https://wwwpub.iaea.org/MTCD/Publications/PDF/P1538_S_web.pdf. Accessed 15 June 2018.
  29. Gooday, A.J., F. Jorissen, L.A. Levin, J.J. Middelburg, S.W.A. Naqvi, N.N. Rabalais, M. Scranton, and J. Zhang. 2009. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6 (8): 1707–1745.  https://doi.org/10.5194/bg-6-1707-2009.CrossRefGoogle Scholar
  30. Gruber, N., and J.N. Galloway. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451 (7176): 293–296.  https://doi.org/10.1038/nature06592.CrossRefGoogle Scholar
  31. Heaton, T.H.E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chemical geology (Isotope Geoscience section) 59: 87–102.  https://doi.org/10.1016/0168-9622(86)90059-X.CrossRefGoogle Scholar
  32. Hemminga, M., Duarte, C., 2000 Seagrass ecology. Cambridge University press.Google Scholar
  33. Hernández Borge, J. 2002. Evolución reciente de la población costera gallega. In Homenaje a José García Oro, ed. M. Romaní and M.A. Novoa. España: Universidad de Santiago de Compostela.Google Scholar
  34. Hernández-Borge, J., 2007. Población vinculada y residencias secundarias en Galicia. Boletín de la Asociación de Geógrafos Españoles, (43), 73–84. http://www.age-geografia.es/ojs/index.php/bage/article/viewFile/582/536. Accessed 23 Feb 2017.
  35. Jankowska, E., L.N. Michel, A. Zaborska, and M. Włodarska-Kowalczuk. 2016. Sediment carbon sink in low-density temperate eelgrass meadows (Baltic Sea). J. Geophys. Res. Biogeosciences 121 (12): 2918–2934.  https://doi.org/10.1002/2016JG003424.CrossRefGoogle Scholar
  36. Kendall, C., E.M. Elliott, and S. Wankel. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable isotopes in ecology and environmental science, ed. R. Michener and K. Lajtha, 375–449. Malden MA USA: Blackwell publishing.CrossRefGoogle Scholar
  37. Kinney, E.L., and I. Valiela. 2013. Changes in δ15N in salt marsh sediments in a long-term fertilization study. Marine Ecology Progress Series 477: 41–52.  https://doi.org/10.3354/meps10147.CrossRefGoogle Scholar
  38. Lassauque, J., G. Lepoint, T. Thibaut, P. Francour, and A. Meinesz. 2010. Tracing sewage and natural freshwater input in a Northwest Mediterranean bay: evidence obtained from isotopic ratios in marine organisms. Marine Pollution Bulletin 60 (6): 843–851.  https://doi.org/10.1016/j.marpolbul.2010.01.008.CrossRefGoogle Scholar
  39. Latimer, J.S., W. Boothman, C.E. Pesch, G.L. Chmura, V. Pospelova, and S. Jayaraman. 2003. Environmental stress and recovery: the geochemical record of human disturbance in New Bedford Harbor and Apponagansett Bay, Massachusetts (USA). Science of the Total Environment 313 (1-3): 153–176.  https://doi.org/10.1016/S0048-9697(03)00269-9.CrossRefGoogle Scholar
  40. Lebreton, B., P. Richard, R. Galois, G. Radenac, A. Brahmia, G. Colli, M. Grouazel, C. André, G. Guillou, and G.F. Blanchard. 2012. Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Marine Biology 159 (7): 1537–1550.  https://doi.org/10.1007/s00227-012-1940-7.CrossRefGoogle Scholar
  41. Lepoint, G., S. Gobert, P. Dauby, and J.M. Bouquegneau. 2004. Contributions of benthic and planktonic primary producers to nitrate and ammonium uptake fluxes in a nutrient-poor shallow coastal area (Corsica, NW Mediterranean). Journal of Experimental Marine Biology and Ecology 302 (1): 107–122.  https://doi.org/10.1016/j.jembe.2003.10.005.CrossRefGoogle Scholar
  42. Lepoint, G., J. Jacquemart, J.M. Bouquegneau, V. Demoulin, and S. Gobert. 2007. Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). Journal of Phycology 43 (2): 208–218.  https://doi.org/10.1111/j.1529-8817.2007.00322.x.CrossRefGoogle Scholar
  43. Libes, S. 1993. Reading the sedimentary record: the use of stable isotopes in the study of paleoceanography. In An introduction to marine biogeochemistry, ed. S. Libes, 557–591. New York USA: Wiley.Google Scholar
  44. Machás, R., and R. Santos. 1999. Sources of organic matter in Ria Formosa revealed by stable isotope analysis. Acta Oecologica 20 (4): 463–469.  https://doi.org/10.1016/S1146-609X(99)00122-8.CrossRefGoogle Scholar
  45. Macreadie, P.I., K. Allen, B.P. Kelaher, P.J. Ralph, and C.G. Skilbeck. 2012. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology 18 (3): 891–901.  https://doi.org/10.1111/j.1365-2486.2011.02582.x.CrossRefGoogle Scholar
  46. Mancinelli, G., and S. Vizzini. 2015. Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: state of the art, knowledge gaps, and community-scale perspectives. Estuarine, Coastal and Shelf Science 156 (1): 195–204.  https://doi.org/10.1016/j.ecss.2014.11.030.CrossRefGoogle Scholar
  47. Marconi, D., M.A. Weigand, P.A. Rafter, M.R. McIlvin, M. Forbes, K.L. Casciotti, and D.M. Sigman. 2014. Nitrate isotope distributions on the US GEOTRACES North Atlantic cross-basin section: signals of polar nitrate sources and low latitude nitrogen cycling. Marine Chemistry 177: 143–156.  https://doi.org/10.1016/j.marchem.2015.06.007.CrossRefGoogle Scholar
  48. Marshall, J., J.R. Brooks, and K. Lajtha. 2007. Sources of variation in the stable isotopic composition of plants. In Stable isotopes in ecology and environmental science, ed. R. Michener and K. Lajtha, 238–282. Malden MA USA: Blackwell publishing.Google Scholar
  49. Mateo, M.A., 2015. El valor de las praderas de angiospermas marinas. En: Ruiz, J.M., Guillén, J.E., Ramos Segura, A. Otero, M.M. (Eds.). Atlas de las praderas marinas de España. IEO/IEL/UICN, Murcia-Alicante-Málaga: 64-69 pp. https://www.iucn.org/es/content/atlas-de-laspraderas-marinas-de-espa%C3%B1a. Accesses 15 Dec 2017.
  50. Méndez, G., and F. Vilas. 2005. Geological antecedents of the Rias Baixas (Galicia, northwest Iberian Peninsula). Journal of Marine Systems 54 (1-4): 195–207.  https://doi.org/10.1016/j.jmarsys.2004.07.012.CrossRefGoogle Scholar
  51. Méndez-Martínez, G., M. Pérez-Arlucea, R. González-Villanueva, and A. Ovejero-Campos. 2011. Anthropogenic influence on the Holocene sedimentation process along the Atlantic coast of Galicia (NW Iberian Peninsula). Journal of Coastal Research 64: 1788–1792.Google Scholar
  52. Michalski, G., M. Kolanowski, and K.M. Riha. 2015. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts. Isotopes in Environmental and Health Studies 51 (3): 1–10.  https://doi.org/10.1080/10256016.2015.1054821.CrossRefGoogle Scholar
  53. Michener, R.H., and L. Kaufman. 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Stable isotopes in ecology and environmental science, ed. R. Michener and K. Lajtha, 238–282. Malden MA USA: Blackwell publishing.CrossRefGoogle Scholar
  54. Middelburg, J.J., K. Soetaert, P.M.J. Herman, H.T.S. Boschker, and C.H.R. Heip. 2004. Burial of nutrients in coastal sediments: the role of primary producers. In Estuarine nutrient cycling: the influence of primary producers, ed. S. Nielsen, G. Banta, and M. Pedersen, 217–230. The Netherlands: Kluwer academic publishers.CrossRefGoogle Scholar
  55. Möbius, J. 2013. Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochimica et Cosmochimica Acta 105: 422–432.  https://doi.org/10.1016/j.gca.2012.11.048.CrossRefGoogle Scholar
  56. Papadimitriou, S., H. Kennedy, R.M.N.V. Rodrigues, D.P. Kennedy, and T.H.E. Heaton. 2006. Using variation in the chemical and stable isotopic composition of Zostera noltii to assess nutrient dynamics in a temperate seagrass meadow. Organic Geochemistry 37 (10): 1343–1358.  https://doi.org/10.1016/j.orggeochem.2006.01.007.CrossRefGoogle Scholar
  57. Phillips, D.L., and J.W. Gregg. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136 (2): 261–269.  https://doi.org/10.1007/s00442-003-1218-3.CrossRefGoogle Scholar
  58. Quintana, B., P. Álvarez-Iglesias, R. Santamaría, B. Rubio, and M. Pérez-Arlucea. 2006. Low-level gamma spectrometry for pollution assessment in San Simón Bay (Vigo, Spain). Journal of Physics: Conference Series 41: 400–407.  https://doi.org/10.1088/1742-6596/41/1/044.Google Scholar
  59. Rizzo, S., S. Basile, A. Caruso, C. Cosentino, L. Tranchina, and M. Brai. 2009. Dating of a sediment core by 210Pbex method and Pb pollution chronology in the Palermo Gulf (Italy). Water, Air, and Soil Pollution 202 (1–4): 109–120.  https://doi.org/10.1007/s11270-008-9961-z.CrossRefGoogle Scholar
  60. Roca, G., T. Alcoverro, D. Krause-Jensen, T.J.S. Balsby, M.M. Van Katwijk, N. Marbá, R. Santos, R. Arthurb, O. Mascaró, Y. Fernández-Torquemada, M. Péreza, C.M. Duarte, and J. Romero. 2016. Response of seagrass indicators to shifts in environmental stressors: a global review and management synthesis. Ecological Indicators 63: 310–323.  https://doi.org/10.1016/j.ecolind.2015.12.007.CrossRefGoogle Scholar
  61. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin, E. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley. 2009. Planetary boundaries: exploring the safe operating space for humanity. Nature 461 (7263): 472–475.  https://doi.org/10.1038/461472a.CrossRefGoogle Scholar
  62. Román, M., S. Rendal, E. Fernández, and G. Méndez. 2018. Seasonal variability of the carbon and nitrogen isotopic signature in a Zostera noltei meadow at the NW Iberian Peninsula. Wetlands 38 (4): 739–753.  https://doi.org/10.1007/s13157-018-1019-4.CrossRefGoogle Scholar
  63. Rosón G, Gaboras JM, Pérez FF, Herrera-Cortijo JL, Ruiz-Villareal M, Castro JC, Piedracoba S, Álvarez-Salgado XA (2009). Evidencias e impactos do cambio climático en Galicia, In Pérez-Muñuzurri (Ed.). Evidencias do cambio climático na hidrografía e a dinámica das Rías e da plataforma galega. 287–302. Xunta de Galicia. Spain.Google Scholar
  64. Rossi, F., A. Baeta, and J.C. Marques. 2015. Stable isotopes reveal habitat-related diet shifts in facultative deposit-feeders. Journal of Sea Research 95: 172–179.  https://doi.org/10.1016/j.seares.2014.07.004.CrossRefGoogle Scholar
  65. Ruiz-Fernández, A.C., C. Hillaire-Marcel, B. Ghaleb, M. Soto-Jiménez, and F. Páez-Osuna. 2002. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients. Environmental Pollution 118 (3): 365–377.  https://doi.org/10.1016/S0269-7491(01)00287-1.CrossRefGoogle Scholar
  66. Ruiz-Fernández, A.C., J.A. Sanchez-Cabeza, C. Alonso-Hernández, V. Martínez-Herrera, L.H. Pérez-Bernal, M. Preda, C. Hillaire-Marcel, J. Gastaud, and A.J. Quejido-Cabezas. 2012. Effects of land use change and sediment mobilization on coastal contamination (Coatzacoalcos River, Mexico). Continental Shelf Research 37: 57–65.  https://doi.org/10.1016/j.csr.2012.02.005.CrossRefGoogle Scholar
  67. Sánchez-Cabeza, J, Ruiz-Fernández, A., 2012. Modelos de fechado por 210Pb. In Sanchez-Cabeza, J., Díaz-Asencio, M., Ruiz-Fernández, A. (Eds). Radiocronología de Sedimentos Costeros Utilizando 210Pb: Modelos, Validación y Aplicaciones. Organismo internacional de energía atómica. Viena. http://www-pub.iaea.org/MTCD/Publications/PDF/P1538_S_web.pdf. Accessed 15 June 2018.
  68. Sánchez-Lizaso, J.L., Ruiz, J.M., Bernadeu-Esteller, J., 2015. Causas del deterioro y pérdida de praderas marinas en España: El impacto del hombre. En: Ruiz, J.M., Guillén, J.E., Ramos Segura, A. Otero, M.M. (Eds.). Atlas de las praderas marinas de España. IEO/IEL/UICN, Murcia-Alicante-Málaga: 70-79 pp. https://www.iucn.org/es/content/atlas-de-las-praderas-marinas-de-espa%C3%B1a. Accessed 15 Dec 2017.
  69. Schubert, P.R., R. Karez, T.B.H. Reusch, and J. Dierking. 2013. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea. Marine Pollution Bulletin 72 (1): 64–70.  https://doi.org/10.1016/j.marpolbul.2013.04.029.CrossRefGoogle Scholar
  70. Schultz, D.J., and J.A. Calder. 1975. Organic carbon 13C/12C variations in estuarine sediments. Geochimica et Cosmochimica Acta 40 (4): 381–385.  https://doi.org/10.1016/0016-7037(76)90002-8.CrossRefGoogle Scholar
  71. Seitzinger, S., J.A. Harrison, J.K. Böhlke, A.F. Bouwman, R. Lowrance, B. Peterson, C. Tobias, and G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16 (6): 2064–2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.Google Scholar
  72. Smil, V. 2001. Enriching the Earth. Cambridge, MA: MIT Press.Google Scholar
  73. Sulzman, E.W. 2007. Stable isotope chemistry and measurement: a primer. In Stable isotopes in ecology and environmental science, ed. R. Michener and K. Lajtha. Malden MA USA: Blackwell publishing.Google Scholar
  74. Vafeiadou, A.M., P. Materatski, H. Adão, M. De Troch, and T. Moens. 2014. Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11 (14): 4001–4014.  https://doi.org/10.5194/bg-11-4001-2014.CrossRefGoogle Scholar
  75. Van Engeland, T., T.J. Bouma, E.P. Morris, F.G. Brun, G. Peralta, M. Lara, I.E. Hendriks, P. van Rijswijk, B. Veuger, and J.J. Middelburg. 2013. Dissolved organic matter uptake in a temperate seagrass ecosystem. Marine Ecology Progress Series 478: 87–100.  https://doi.org/10.3354/meps10183.CrossRefGoogle Scholar
  76. Voss, M., and U. Struck. 1997. Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic Sea). Marine Chemistry 59: 35–49.CrossRefGoogle Scholar
  77. Voss, M., B. Larsen, M. Leivuori, and H. Vallius. 2000. Stable isotope signals of eutrophication in Baltic Sea sediments. Journal of Marine Systems 25 (3-4): 287–298.  https://doi.org/10.1016/S0924-7963(00)00022-1,  https://doi.org/10.1016/S0304-4203(97)00073-X.
  78. Walton, M.E.M., I. Al-Maslamani, N. Haddaway, H. Kennedy, A. Castillo, E.S. Al-Ansari, I. Al-Shaikh, M. Abdel-Moati, M.A.A. Al-Yafei, and L. Le Vay. 2016. Extreme 15N depletion in seagrasses. Estuaries and Coasts. 39 (6): 1709–1723.  https://doi.org/10.1007/s12237-016-0103-3.CrossRefGoogle Scholar
  79. Wigand, C., C.T. Roman, E. Davey, M. Stolt, R. Johnson, A. Hanson, E.B. Watson, S.B. Moran, D.R. Cahoon, J. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological Applications 24 (4): 633–649.  https://doi.org/10.1890/13-0594.1.CrossRefGoogle Scholar
  80. Xiao, H.Y., and C.Q. Liu. 2010. Identifying organic matter provenance in sediments using isotopic ratios in an urban river. Geochemical Journal 44 (3): 181–187.  https://doi.org/10.2343/geochemj.1.0059.CrossRefGoogle Scholar
  81. Zimmerman, A., and E.A. Canuel. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry 69 (1-2): 117–137.  https://doi.org/10.1016/S0304-4203(99)00100-0.CrossRefGoogle Scholar
  82. Zylicz, T., I. Bateman, S. Georgiou, A. Markowska, D. Dziegielewska, R. Kerry Turner, A. Graham, and I. Langford. 1996. Contingent valuation of eutrophication damage in the Baltic Sea region. Oceanographic Literature Review 43 (1): 79.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  1. 1.Faculty of Marine Sciences. Marine Research CenterUniversity of VigoVigoSpain
  2. 2.College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  3. 3.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations