Skip to main content

Advertisement

Log in

The Inorganic Carbon Chemistry in Coastal and Shelf Waters Around Ireland

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The wintertime spatial distribution of carbonate parameters in outer estuarine and coastal waters around Ireland is described from total alkalinity (TA) and dissolved inorganic carbon (DIC) data collected between 2010 and 2013. Due to predominantly limestone bedrock of their river catchments, the River Shannon and Barrow, Nore and Suir River system export high concentrations (>3800 μmol kg−1) of TA to their estuarine and inshore coastal waters where estuarine alkalinity decreases with increasing salinity. TA is lower in rivers with a non-calcareous bedrock, with positively correlated alkalinity-salinity relationships in both the Lee and Foyle outer estuaries. Winter pCO2 in the Shannon, Barrow/Nore/Suir and Lee estuaries is supersaturated relative to atmospheric CO2, while pCO2 in the outer Liffey estuary is slightly lower than atmospheric CO2 in three consecutive winters, indicative of a CO2 sink. Winter pCO2 is close to atmospheric equilibrium along the western shelf and through the centre of the Irish Sea, while it is a CO2 sink across the North Channel. While aragonite was supersaturated in most Irish waters, it was close to undersaturation in both the Lee estuary, attributed to its low alkalinity freshwater source, and Barrow/Nore/Suir estuary related to the flux of high concentrations of DIC from this river system. The seasonal impacts on inorganic carbon chemistry was also investigated by comparing winter and summer data collected between 2009 and 2013 along two transects in western coastal waters and along the western shelf edge. DIC was ~60 μmol kg−1 lower in summer relative to winter in the coastal transects and 39 μmol kg−1 lower along the shelf edge, accompanied by depleted nutrients and supersaturation of dissolved oxygen during summer, indicative of primary production. TA was generally higher in summer relative to winter corresponding with a decrease in nitrate, indicating that primary production dominated the TA distribution over calcification. An exception to this was at two stations along the shelf edge where TA was lower in summer relative to winter (51 μmol kg−1) and coincides with high reflectance in satellite images from a coccolithophore bloom at the time of sampling. While pCO2 was close to atmospheric equilibrium along the shelf edge during winter, this area was a CO2 sink during summer, apart from the stations where calcification was likely occurring resulting in elevated CO2 relative to atmospheric concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril, G., and A. Borges. 2005. Carbon dioxide and methane emissions from estuaries. In Greenhouse gas emissions—fluxes and processes, ed. A. Tremblay, L. Varfalvy, C. Roehm, and M. Garneau, 187–207. Berlin: Springer.

    Chapter  Google Scholar 

  • Álvarez-Salgado, X.A., S. Beloso, I. Joint, E. Nogueira, L. Chou, F.F. Pérez, S. Groom, J.M. Cabanas, A.P. Rees, and M. Elskens. 2002. New production of the NW Iberian shelf during the upwelling season over the period 1982–1999. Deep Sea Research, Part I: Oceanographic Research Papers 49: 1725–1739.

    Article  Google Scholar 

  • Amiotte Suchet, P., J.-L. Probst, and W. Ludwig. 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles 17: 1038.

    Article  Google Scholar 

  • Barnes, R.T., and P.A. Raymond. 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology 266: 318–327.

    Article  Google Scholar 

  • Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57.

  • Bates, N.R., M.H.P. Best, K. Neely, R. Garley, A.G. Dickson, and R.J. Johnson. 2012. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences Discussions 9: 989–1019.

    Article  Google Scholar 

  • Bates, N.R., Y.M. Astor, M.J. Church, K. Currie, J.E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J.M. Santana-Casiano. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27: 126–141.

    Article  Google Scholar 

  • Beldowski, J., A. Löffler, B. Schneider, and L. Joensuu. 2010. Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea. Journal of Marine Systems 81: 252–259.

    Article  Google Scholar 

  • Berner, R.A., A.C. Lasaga, and D.J. Garretson. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283: 641–683.

    Article  CAS  Google Scholar 

  • Borges, A.V., and G. Abril. 2011. Carbon dioxide and methane dynamics in estuaries. In Treatise on estuarine and coastal science, volume 5: Biogeoch≈emistry, ed. E. Wolanski and D. McLusky, 119–161. Waltham: Academic Press.

    Chapter  Google Scholar 

  • Borges, A.V., and M. Frankignoulle. 1999. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. Journal of Marine Systems 19: 251–266.

    Article  Google Scholar 

  • Borges, A.V., and M. Frankignoulle. 2003. Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas. Journal of Geophysical Research 108: 3140.

    Article  Google Scholar 

  • Borges, A.V., and N. Gypens. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography 55: 346–353.

    Article  CAS  Google Scholar 

  • Borges, A.V., B. Delille, and M. Frankignoulle. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophysical Research Letters 32, L14601.

    Article  Google Scholar 

  • Borges, A.V., L.S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau. 2006. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70: 375–387.

    Article  CAS  Google Scholar 

  • Bowden, K.F. 1980. Chapter 12 physical and dynamical oceanography of the Irish Sea. In The North-west European Shelf Seas: The Sea bed and the Sea in Motion II. Physical and chemical oceanography, and physical resources, ed. F.T. Banner, M.B. Collins and K.S. Massie, 391–413. Elsevier Oceanography Series.

  • Brewer, P., and J.C. Goldman. 1976. Alkalinity changes generated by phytoplankton growth. Limnology and Oceanography 21: 108–117.

    Article  CAS  Google Scholar 

  • Browne, R., B. Deegan, L. Watson, D.M.G. Bhríde, M. Norman, M. Ó’Cinnéide, D. Jackson, and T. O’Carroll. 2008. Status of Irish Aquaculture 2007 ed. Marine Institute, Bord Iascaigh Mhara, and Údarás na Gaeltachta.

  • Cabecadas, L., and A.P. Oliveira. 2005. Impact of a Coccolithus braarudii bloom on the carbonate system of Portuguese coastal waters. Journal of Nannoplankton Research 27: 141–147.

    Google Scholar 

  • Cai, W.-J., M. Dai, and Y. Wang. 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters 33, L12603.

    Article  Google Scholar 

  • Cai, W.-J., X. Guo, C.-T.A. Chen, M. Dai, L. Zhang, W. Zhai, S.E. Lohrenz, K. Yin, P.J. Harrison, and Y. Wang. 2008. A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research 28: 1538–1549.

    Article  Google Scholar 

  • Cai, W.-J., X. Hu, W.-J. Huang, L.-Q. Jiang, Y. Wang, T.-H. Peng, and X. Zhang. 2010. Alkalinity distribution in the western North Atlantic Ocean margins. Journal of Geophysical Research 115, C08014.

    Google Scholar 

  • Cai, W.-J., X. Hu, W.-J. Huang, M.C. Murrell, J.C. Lehrter, S.E. Lohrenz, W.-C. Chou, W. Zhai, J.T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C. Gong. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.

    Article  CAS  Google Scholar 

  • Cave, R.R., and T. Henry. 2011. Intertidal and submarine groundwater discharge on the west coast of Ireland. Estuarine, Coastal and Shelf Science 92: 415–423.

    Article  CAS  Google Scholar 

  • Chen, C.-T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography 56: 578–590.

    Article  CAS  Google Scholar 

  • Cole, J.J., and N.F. Caraco. 2001. Carbon in catchments: Connecting terestrial carbon losses with aquatic metabolism. Marine and Freshwater Research 52: 101–110.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A: Oceanographic Research Papers 28: 609–623.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1990. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics 22: 113–127.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1995. Determination of dissolved oxygen in sea water by Winkler titration. WOCE operations manual. Part 3.1.3 Operations & methods, WHP Office Report WHPO 91-1.

  • Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3: 1–191.

    Google Scholar 

  • Doney, S.C., N. Mahowald, I. Lima, R. Feely, F.T. Mackenzie, J.-F. Lamarque, and P.J. Rasch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Science of the United States of America 104: 14580–14585.

    Article  CAS  Google Scholar 

  • Doney, S.C., B. Tilbrook, S. Roy, N. Metzl, C. Le Quéré, M. Hood, R.A. Feely, and D. Bakker. 2009. Surface-ocean CO2 variability and vulnerability. Deep Sea Research Part II: Topical Studies in Oceanography 56: 504–511.

    Article  CAS  Google Scholar 

  • Dore, J.E., R. Lukas, D.W. Sadler, M.J. Church, and D.M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Science of the USA 106.

  • Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236.

    Article  CAS  Google Scholar 

  • EPA. 2008. Ireland’s Environment 2008. Dublin: Environemtal Protection Agency.

  • EPA. 2010. Water Quality in Ireland 2007-2009, ed. M. McGarrigle, J. Lucey and M.Ó. Cinnéide. Ireland: Environmental Protection Agency.

  • Feely, R.A., C. Sabine, J.M. Hernández-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492.

    Article  CAS  Google Scholar 

  • Fitzer, S.C., V.R. Phoenix, M. Cusack, and N.A. Kamenos. 2014. Ocean acidification impacts mussel control on biomineralisation. Science Reports 4.

  • Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, and J.-M. Théate. 1998. Carbon dioxide emission from European estuaries. Science 282: 434–436.

    Article  CAS  Google Scholar 

  • Furuya, K., and K. Harada. 1995. An automated precise Winkler titration for determining dissolved oxygen on board ship. Journal of Oceanography 51: 375–383.

    Article  CAS  Google Scholar 

  • Garrels, R.M., and F.T. Mackenzie. 1971. Evolution of sedimentary rocks. New York: W. W. Norton.

    Google Scholar 

  • Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603.

    Article  Google Scholar 

  • Gazeau, F., J.P. Gattuso, C. Dawber, A.E. Pronker, F. Peene, J. Peene, C.H.R. Heip, and J.J. Middelburg. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7: 2051–2060.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Ehrhardt, K. Kremling, and T. Almgren. 1999. Methods of seawater analysis. Third edition: Wiley-VCH.

  • Harlay, J., A.V. Borges, C. Van Der Zee, B. Delille, R.H.M. Godoi, L.S. Schiettecatte, N. Roevros, K. Aerts, P.-E. Lapernat, L. Rebreanu, S. Groom, M.-H. Daro, R. Van Grieken, and L. Chou. 2010. Biogeochemical study of a coccolithophore bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004. Progress in Oceanography 86: 317–336.

    Article  Google Scholar 

  • Hill, A.E., J. Brown, L. Fernand, J. Holt, K.J. Horsburgh, R. Proctor, R. Raine, and W.R. Turrell. 2008. Thermohaline circulation of shallow tidal seas. Geophysical Research Letters 35, L11605.

    Article  Google Scholar 

  • Hjalmarsson, S., K. Wesslander, L.G. Anderson, A. Omstedt, M. Perttilä, and L. Mintrop. 2008. Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Continental Shelf Research 28: 593–601.

    Article  Google Scholar 

  • Howland, R.J.M., A.D. Tappin, R.J. Uncles, D.H. Plummer, and N.J. Bloomer. 2000. Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. Science of the Total Environment 251(252): 125–138.

    Article  Google Scholar 

  • Huthnance, J.M. 1995. Circulation, exchange and water masses at the ocean margin: The role of physical processes at the shelf edge. Progress in Oceanography 35: 353–431.

    Article  Google Scholar 

  • Jarvie, H.P., C. Neal, D.V. Leach, G.P. Ryland, W.A. House, and A.J. Robson. 1997. Major ion concentrations and the inorganic carbon chemistry of the Humber rivers. The Science of the Total Environment 194(195): 285–302.

    Article  Google Scholar 

  • Johnson, K.M., J.M. Sieburth, P.Jl. Williams, and L. Brändström. 1987. Coulometric total carbon dioxide analysis for marine studies: Automation and calibration. Marine Chemistry 21: 117–133.

    Article  CAS  Google Scholar 

  • Johnson, K.M., K.D. Wills, D.B. Butler, W.K. Johnson, and C.S. Wong. 1993. Coulometric total carbon dioxide analysis for marine studies: Maximizing the performance of an automated gas extraction system and coulometric detector. Marine Chemistry 44: 167–187.

    Article  CAS  Google Scholar 

  • Korfali, S.I., and B.E. Davies. 2004. Speciation of metals in sediment and water in a river underlain by limestone: Role of carbonate species for purification capacity of rivers. Advances in Environmental Research 8: 599–612.

    Article  CAS  Google Scholar 

  • Lewis, E., and D.W.R. Wallace. 1998. Program developed for CO 2 system calculations: ORNL/CDIAC-105. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Book  Google Scholar 

  • McGrath, T., C. Kivimae, T. Tanhua, R.R. Cave, and E. McGovern. 2012. Inorganic carbon and pH levels in the Rockall Trough 1991-2010. Deep Sea Research, Part I: Oceanographic Research Papers 68: 79–91.

    Article  CAS  Google Scholar 

  • McGrath, T., C. Kivimäe, E. McGovern, R.R. Cave, and E. Joyce. 2013. Winter measurements of oceanic biogeochemical parameters in the Rockall Trough (2009–2012). Earth Science Systems Data 5: 375–383.

    Article  Google Scholar 

  • Medaković, D. 2000. Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis L. Helgoland Marine Research 54: 1–6.

    Article  Google Scholar 

  • Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18: 897–907.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen and phosphorus transport by world rivers. American Journal of Science 282: 401–450.

    Article  CAS  Google Scholar 

  • Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61: 139–142.

    Article  CAS  Google Scholar 

  • Millero, F.J., K. Lee, and M. Roche. 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry 60: 111–130.

    Article  CAS  Google Scholar 

  • Mintrop, L., F.F. Pérez, M. Gonzalez-Dávila, J.M. Santana-Casiano, and A. Körtzinger. 2000. Alkalinity determination by potentiometry: Intercalibration using three different methods. Ciencias Marinas 26: 23–37.

    CAS  Google Scholar 

  • O’Boyle, S., G. McDermott, and R. Wilkes. 2009. Dissolved oxygen levels in estuarine and coastal waters around Ireland. Marine Pollution Bulletin 58: 1657–1663.

    Article  Google Scholar 

  • Olafsson, J., S.R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T.S. Arnarson, and T. Takahashi. 2009a. Rate of Iceland Sea acidification from time series measurements. Biogeosciences Discussions 6: 5251–5270.

    Article  Google Scholar 

  • Olafsson, J., S.R. Olafsdottir, A. Benoit-Cattin, and T. Takahashi. 2009b. The Irminger Sea and the Iceland sea time series measurements of sea water carbon and nutrient chemistry 1983–2006. Earth System Science Data Discussions 2: 477–492.

    Article  Google Scholar 

  • Oliveira, A.P., M. Nogueira, and G. Cabecadas. 2006. CO2 variability in surface coastal waters adjacent to the Tagus Estuary (Portugal). Ciencias Marinas 32: 401–411.

    CAS  Google Scholar 

  • Pingree, R.D., B. Sinha, and C.R. Griffiths. 1999. Seasonality of the European slope current (Goban Spur) and ocean margin exchange. Continental Shelf Research 19: 929–975.

    Article  Google Scholar 

  • Poulton, A.J., M.C. Stinchcombe, E.P. Achterberg, D.C.E. Bakker, C. Dumousseaud, H.E. Lawson, G.A. Lee, S. Richier, D.J. Suggett, and J.R. Young. 2014. Coccolithophores on the north-west European shelf: Calcification rates and environmental controls. Biogeosciences 11: 3919–3940.

    Article  Google Scholar 

  • Raymond, P.A., and J.J. Cole. 2003. Increase in the export of alkalinity from North America’s largest river. Science 301: 88–91.

    Article  CAS  Google Scholar 

  • Raymond, P.A., N.F. Caraco, and J.J. Cole. 1997. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20: 381–390.

    Article  CAS  Google Scholar 

  • Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of sea-water. In The sea, ed. M.N. Hill, 26-77. New York: Wiley Interscience.

  • Robbins, L.L., M.E. Hansen, J.A. Kleypas, and S.C. Meylan. 2010. CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): U.S. Geological Survey Open-File Report 2010–1280, 17 p

  • Schiettecatte, L.S., H. Thomas, Y. Bozec, and A.V. Borges. 2007. High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea. Marine Chemistry 106: 161–173.

    Article  CAS  Google Scholar 

  • Sharples, J., J.F. Tweddle, J.A.M. Green, M.R. Palmer, Y.-N. Kim, A.E. Hickman, P.M. Holligan, C.M. Moore, T.P. Rippeth, J.H. Simpson, and V. Krivtsov. 2007. Spring–neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnology and Oceanography 52: 1735–1747.

    Article  CAS  Google Scholar 

  • Smith, A.M., and R.R. Cave. 2012. Influence of fresh water, nutrients and DOC in two submarine-groundwater-fed estuaries on the west of Ireland. Science of the Total Environment 438: 260–270.

    Article  CAS  Google Scholar 

  • Suchet, P.A., and J.L. Probst. 1995. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus B 47: 273–280.

    Article  Google Scholar 

  • Suykens, K., B. Delille, L. Chou, C. De Bodt, J. Harlay, and A.V. Borges. 2010. Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay). Global Biogeochemical Cycles 24, GB3022.

    Article  Google Scholar 

  • Talmage, S.C., and C.J. Gobler. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences 107: 17246–17251.

    Article  CAS  Google Scholar 

  • Tank, S.E., P.A. Raymond, R.G. Striegl, J.W. McClelland, R.M. Holmes, G.J. Fiske, and B.J. Peterson. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles 26, GB4018.

    Google Scholar 

  • Wallace, R.B., H. Baumann, J.S. Grear, R.C. Aller, and C.J. Gobler. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148: 1–13.

    Article  CAS  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382.

    Article  Google Scholar 

  • Weiss, R.F. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research 17: 721–735.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Irish Environmental Protection Agency (EPA) and the Northern Ireland Environment Agency (NIEA) for their riverine data and supporting information. We would also like to thank the Geological Survey of Ireland (GSI) for their shapefiles of Ireland’s bedrock geology. Thanks to Michel Ramonet for the atmospheric CO2 data from Mace Head Atmospheric Research Station and to Glenn Nolan for access to shiptime and data collection along the western shelf and the Rockall Trough. Seven of the surveys were funded by the Irish government’s National Development Plan 2007–2013, while shiptime for CV0924 was provided by the Marine Institute as part of NUIG’s shiptime student training programme. We are grateful to the masters and crew on the RV Celtic Voyager and RV Celtic Explorer and all the scientists who contributed over the years. We are grateful to the comments of the anonymous reviewers and editor for their constructive comments which improved the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triona McGrath.

Additional information

Communicated by Alberto Vieira Borges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, T., McGovern, E., Cave, R.R. et al. The Inorganic Carbon Chemistry in Coastal and Shelf Waters Around Ireland. Estuaries and Coasts 39, 27–39 (2016). https://doi.org/10.1007/s12237-015-9950-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9950-6

Keywords

Navigation