Advertisement

Inter- and Intraspecific Edible Plant Diversity of the Tének Milpa Fields in Mexico

  • C. HeindorfEmail author
  • J. A. Reyes–Agüero
  • A. van’t Hooft
  • J. Fortanelli–Martínez
Original Article

Abstract

Traditional land use systems are often rich in crop diversity. However, complete inter- and intraspecific data are scarce, limiting our understanding and underestimating the diversity of plant genetic reservoirs. This study attempted to characterize the total edible plant diversity of the milpas, or polyculture maize-based fields, managed by Tének communities in México. In 41 milpas belonging to 33 farmers in three localities at different altitudes, 191 edible plant types were inventoried, comprising 84 species that include 140 variants and 51 species with no variants. Diversity varies between and within localities. Only 8.4% of the diversity is shared among the localities and, on average, 61.2% of the total richness is managed by single farmers. The intermediate altitude has higher diversity, including 67.5% of the total richness. Crop population numbers are low and highly variable. To contribute to the interpretation and application of results, a proposed method to identify priority crops, sites, and farmers is presented. This study shows, once again, that indigenous farming communities are key actors for the use and conservation of crop genetic diversity. More detailed studies such as this may evidence much larger managed crop diversity than currently is acknowledged.

Key Words

Agrobiodiversity altitude conservation ethnobotany Huasteca richness 

Los sistemas agrícolas tradicionales son a menudo ricos en diversidad de cultivos. Sin embargo, datos inter– e intra–específicos completos son escasos, limitando nuestro entendimiento y subestimando la diversidad de reservorios genéticos. Este estudio buscó caracterizar la diversidad total de las plantas comestibles en las milpas, policultivos basados en maíz, manejadas por comunidades Tének en México. En 41 milpas de 33 agricultores en tres localidades en diferentes altitudes, se inventariaron 191 tipos de plantas comestibles, comprendiendo 84 especies con 140 variantes y 51 especies sin variantes. La diversidad varía entre y dentro de las localidades. Solamente 8.4% de la diversidad es compartida entre las localidades y 61.2% de la riqueza es manejada por agricultores individuales. La altitud intermedia presenta la mayor diversidad, incluyendo 67.5% de la riqueza total. Los números poblacionales de los cultivos son bajos y altamente variables. Para contribuir a interpretar y aplicar los resultados, se presenta un método para identificar cultivos, sitios y agricultores prioritarios. Este estudio muestra, una vez más, que las comunidades agrícolas indígenas son actores clave para uso y conservación de la diversidad genética de cultivos. Más estudios detallados como este podrán evidenciar una diversidad de cultivos mucho mayor que lo que actualmente se reconoce.

Palabras Clave

Agrobiodiversidad altitud conservación etnobotánica Huasteca riqueza 

Notes

Acknowledgments

We thank taxonomists Mr. José García and Dr. Eleazar Carranza of the Desert Zone Research Institute Herbarium for supporting us with species identification. We thank Maestra Gudelia Cruz, Alejandra Balderas, and Señorina Reyes for their help with the list of Tének names. We are grateful to all the key informants and households in Poytzen, Jol Mom, and Unión de Guadalupe for participating in this research. Special thanks to Matilde, Don Olegario, Don Plácido, Don Benigno, María Antonia, and Marie, student assistants, and Agosto and Ike.

Funding Information

This work was supported by a grant from CONACYT (CB–2016–180193), a CONACYT scholarship for doctoral studies and the Autonomous University of San Luis Potosí through the “Fondo de apoyo a la investigación” (C18–FAI–05–58.58), and the “Programa de Movilidad Nacional e Internacional de Estudiantes de Posgrado.”

Supplementary material

12231_2019_9475_MOESM1_ESM.docx (75 kb)
ESM 1 (DOCX 75 kb)
12231_2019_9475_MOESM2_ESM.docx (21 kb)
ESM 2 (DOCX 21 kb)
12231_2019_9475_MOESM3_ESM.docx (20 kb)
ESM 3 (DOCX 20 kb)
12231_2019_9475_MOESM4_ESM.jpg (9.4 mb)
ESM 4 (JPG 9658 kb)

Literature Cited

  1. Alcorn, J. B. 1984. Huastec Mayan ethnobotany. Austin: University of Texas Press.Google Scholar
  2. Altieri, M. A. and L. C. Merrick. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany 41(1):86–96.CrossRefGoogle Scholar
  3. FAO. 2019. The state of the world's biodiversity for food and agriculture, J. Bélanger and D. Pilling (eds.). FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome. http://www.fao.org/3/CA3129EN/ca3129en.pdf.
  4. Bellon, M. A., A Mastretta–Yanes, A. Ponce–Mendoza, D Ortiz–Santamaría, O Oliveros-Galindo, H. Perales, F. Acevedo, and J. Sarukhán. 2018. Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. Proceedings of the Royal Society B 285(1885):20181049.  https://doi.org/10.1098/rspb.2018.1049.CrossRefPubMedGoogle Scholar
  5. Birol, E., E. Villalba, and M. Smale. 2009. Farmer preferences for milpa diversity and genetically modified maize in Mexico: A latent class approach. Environment and Development Economics 14(4):521–540.CrossRefGoogle Scholar
  6. Blanco, J., L. Pascal, L. Ramon, H. Vandenbroucke, and S. M. Carrière. 2013. Agrobiodiversity performance in contrasting island environments: The case of shifting cultivation in Vanuatu, Pacific. Agriculture, Ecosystems & Environment 174:28–39.CrossRefGoogle Scholar
  7. Brush, S. B. 1995. In situ conservation of landraces in centers of crop diversity. Crop Science 35(2):346–354.CrossRefGoogle Scholar
  8. ———. 2000. The issues of in situ conservation of crop genetic resources. In: Genes in the field: On-farm conservation of crop diversity, ed., S. B. Brush, 3–28. Rome: International Plant Genetic Resources Institute (IPGRI); Ottawa: International Development Research Centre; Boca Raton, Florida: Lewis Publishers.Google Scholar
  9. ——— and H. R. Perales. 2007. A maize landscape: Ethnicity and agro–biodiversity in Chiapas Mexico. Agriculture, Ecosystems & Environment 121(3):211–221.Google Scholar
  10. Contreras–Toledo, A. R., M. Cortés–Cruz, D. E. Costich, M. L. Rico–Arce, J. M. Brehm, and N. Maxted. 2019. Diversity and conservation priorities of crop wild relatives in Mexico. Plant Genetic Resources: Characterization and Utilization 1–11. https//doi: https://doi.org/10.1017/S1479262118000540.CrossRefGoogle Scholar
  11. de Carvalho, M. Â. A., P. J. Bebeli, A. M. B. da Silva, E. Bettencourt, J. J. Slaski, and S. Dias. 2016. Agrobiodiversity: The importance of inventories in the assessment of crop diversity and its time and spatial changes. In: Genetic diversity and erosion, eds., M. R. Ahuja and S. Mohan Jain, 307–335. New York: Springer.CrossRefGoogle Scholar
  12. Deng, K., L. Sanren, L. Zhou, L. Yuan, M. Chen, W. Yingchung, and L. Yuwen. 2012. High levels of aromatic amino acids in gastric juice during the early stages of gastric cancer progression. PloS One (7)11: e49434.  https://doi.org/10.1371/journal.pone.0049434.CrossRefGoogle Scholar
  13. Eilu, G., J. Obua, J. K. Tumuhairwe, and C. Nkwine. 2003. Traditional farming and plant species diversity in agricultural landscapes of south-western Uganda. Agriculture, Ecosystems & Environment 99(1–3):125–134.CrossRefGoogle Scholar
  14. Fernández Eguiarte, A., R. Romero–Centeno, and J. Zavala–Hidalgo. 2018. Atlas Climático Digital de México. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México. https://uniatmos.atmosfera.unam.mx/ (27 January 2018).
  15. Hammer, K., A. Diederichsen, and M. Spahillari. 1999. Basic studies toward strategies for conservation of genetic resources. In: Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, eds., J. Serwinski and I. Faberová, paper 4. Prague: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  16. Hill, M. A. 1979. Twinspan—a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell’s Ecology Program Series. Ithaca, New York: Cornell University.Google Scholar
  17. INEGI (Instituto Nacional de Estadística y Geografía). 2010. Volumen y crecimiento. Población total según tamaño de localidad para cada entidad federativa. https://www3.inegi.org.mx/ (6 February 2018).
  18. Interián Kú, V. M. and J. Duch Gary. 2004. Asociación de la diversidad genética de los cultivos de la milpa con los sistemas agrícolas y factores socioeconómicos en una comunidad de Yucatán. In: Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales, eds., J. L. Chávez–Servia, J. Tuxill, and D. I. Jarvis, 223–228. Cali, Colombia: Instituto Internacional de Recursos Fitogenéticos.Google Scholar
  19. Jarvis, D. I., L. Myer, H. Klemick, L. Guarino, M. Smale, A. H. D. Brown, M. Sadiki, B. Sthapit, and T. Hodgkin. 2000. A training guide for in situ conservation on-farm, Version 1. Rome: International Plant Genetic Resources Institute.Google Scholar
  20. ———, A. H. D. Brown, P. Hung Cuong, L. Collado–Panduro, L. Latournerie–Moreno, S. Gyawali, T. Tanto, M. Sawadogo, I. Mar, M. Sadiki, N. Thi–Ngoc Hue, L. Arias–Reyes, D. Balma, J. Bajracharya, F. Castillo, D. Rijal, L. Belqadi, S. Saidi, J. Ouedraogo, R. Zangre, K. Rhrib, J. L. Chávez, D. Schoen, P. De Santis, C. Fadda, and T. Hodgkin. 2008. A global perspective of the richness and evenness of traditional crop–variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences 105(14):5326–5331.CrossRefGoogle Scholar
  21. Krishna, V. V., A. G. Drucker, U. Pacual, P. T. Raghu, and E. D. I. O. King. 2013. Estimating compensation payments for on–farm conservation of agricultural biodiversity in developing countries. Ecological Economics 87:110–123.CrossRefGoogle Scholar
  22. Lira–Saade, R. 1995. Estudios taxonómicos y ecogeográficos de las Cucurbitaceae Latinoamericanas de importancia económica: Cucúrbita, Sechium, Sicana, y Cyclanthera. Systematic and Ecogeographic Studies on Crops Genepools, No. 9. Rome: International Plant Genetic Resources Institute.Google Scholar
  23. Magurran, A. E. 1991. Ecological diversity and its measurement. London: Chapman and Hall.Google Scholar
  24. Mateos–Macas, L., F. Castillo–González, J. L. Chávez Servia, J. A. Estrada–Gómez, and M. Livera–Muñoz. 2016. Manejo y aprovechamiento de la agrobiodiversidad en el sistema milpa del sureste de México. Acta Agronómica 65(4):413–421.CrossRefGoogle Scholar
  25. McCune, B., J. B. Grace, and D. L. Urban. 2002. Analysis of ecological communities. Gleneden Beach, Oregon: MjM Software design.Google Scholar
  26. Mueller–Dombois, D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. New York: Wiley.Google Scholar
  27. Narloch, U., A. G. Drucker, and U. Pacual. 2011. Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecological Economics 70(11):1837–1845.CrossRefGoogle Scholar
  28. Nigh, R. and S. A. W. Diemont. 2013. The Maya milpa: Fire and legacy of living soil. Frontiers in Ecology and Environment 11 (Online Issue 1): e45–e54. doi: https://doi.org/10.1890/120344.CrossRefGoogle Scholar
  29. Pacicco, L., M. Bodesmo, R. Torricelli, and V. Negri. 2018. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE, 13(6): e0197709.  https://doi.org/10.1371/journal.pone.0197709.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Perales, H. R. and J. R. Aguirre. 2008. Biodiversidad humanizada. In: Capital natural de México, Vol. I: Conocimiento actual de la biodiversidad, ed., Comisión nacional para el uso y conocimiento de la biodiversidad, 565–603. México City: CONABIO.Google Scholar
  31. Perales, H., S. Brush, and C. Qualset. 2003. Landraces of maize in central Mexico: An altitudinal transect. Economic Botany 57(1):7–20.CrossRefGoogle Scholar
  32. Pérez–García, O. and R. F. del Castillo. 2016. The decline of the itinerant milpa and the maintenance of traditional agrobiodiversity: Crops and weeds coexistence in a tropical cloud forest area in Oaxaca, Mexico. Agriculture, Ecosystems and Environment 228:30–37.CrossRefGoogle Scholar
  33. Sadiki, M., D. Jarvis, D. Rijal, J. Bajracharya, N. N. Hue, T. C. Camacho–Villa, L. A. Burgos–May, M. Sawadogo, D. Blama, D. Lope, L. Arias, I. Mar, D. Karamura, D. Williams, J. L. Chavez–Servia, B. Sthapit, and V. R. Rao. 2007. Variety names. An entry point to crop genetic diversity and distribution in agroecosystems? In: Managing biodiversity in agricultural ecosystems, eds., D. I. Jarvis, C. Padoch, and H. D. Cooper, 34–76. New York: Columbia University Press.Google Scholar
  34. Salazar–Barrientos, L. L., M. A. Magaña–Magaña, A. N. Aguilar–Jiménez, and M. F. Ricalde–Pérez. 2016. Factores socioeconómicos asociados al aprovechamiento de la agrobiodiversidad de la milpa en Yucatán. Ecosistemas y Recursos Agropecuarios 3(9):391–400.Google Scholar
  35. Shelef, O., P. J. Weisberg, and F. D. Provenza. 2017. The value of native plants and local production in an era of global agriculture. Frontiers in Plant Science 8:2069.  https://doi.org/10.3389/fpls.2017.02069.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Teran S. and C. H. Rasmussen. 1995. Genetic diversity and agricultural strategy in 16th century and present-day Yucatecan milpa agriculture. Biodiversity and Conservation 4(4): 363–381.CrossRefGoogle Scholar
  37. Thrupp, L. A. 2000. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs 76(2):265–281.CrossRefGoogle Scholar
  38. Toledo, V. M., B. Ortiz, and S. Medellín Morales. 1994. Biodiversity islands in a sea of pasturelands: Indigenous resource management in the humid tropics of Mexico. Etnoecológica 2(3):37–49.Google Scholar
  39. ———, B. F. Ortiz–Espejel, L. Cortés, P. Moguel, and M. D. J. Ordoñez. 2003. The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conservation Ecology 7(3):9. https://www.consecol.org/vol7/iss3/art9/ (10 January 2018).
  40. Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection. Ethnobotany Research and Applications 5:147–158.CrossRefGoogle Scholar
  41. Wambugu, P. W., M. N. Ndjiondjop, and R. J. Henry. 2018. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefing of Functional Genomics 17(3):198–206.CrossRefGoogle Scholar
  42. Williams, N. E., A. R. Carrico, I. Edirisinghe, and P. A. Jayamini Champika. 2018. Assessing the impacts of agrobiodiversity maintenance on food security among farming households in Sri Lanka’s dry zone. Economic Botany 72(2):196–206.CrossRefGoogle Scholar
  43. Zarin, D. J., G. Huijin, and L. Enu Kwesi. 1999. Methods for the assessment of plant species diversity in complex agricultural landscapes: Guidelines for data collection and analysis from the PLEC Biodiversity Advisory Group. PLEC New and Views 13:3–16.Google Scholar

Copyright information

© The New York Botanical Garden 2019

Authors and Affiliations

  1. 1.Desert Zone Research InstituteAutonomous University of San Luis PotosíSan Luis PotosíMexico
  2. 2.Faculty of Social Sciences and HumanitiesAutonomous University of San Luis PotosíSan Luis PotosíMexico

Personalised recommendations