Advertisement

Increasing the Production Efficiency of Potato with Plant Growth Retardants

  • 91 Accesses

Abstract

The vigorous growth phenotype of ‘Bondi’ is characteristic of high endogenous gibberellins, making it ideal for evaluating the efficacy of gibberellin biosynthesis inhibitors to improve allometric partitioning and production efficiency in potato. Foliar applications of prohexadione-calcium decreased foliar growth with no effects on tuber number, size, or yield. In contrast, when applied pre-tuberization, paclobutrazol decreased maximum foliar growth from 91 to 63 MT ha−1, increased tubers plant−1 from 6.4 to 8.9, and decreased average tuber fresh weight from 296 to 188 g tuber−1 with no reduction in tuber yield, which effectively increased the harvest index. However, when applied post-tuberization, PBZ reduced maximum foliar growth from 91 to 72 MT ha−1 with no effects on tuber number, size, or yield. Paclobutrazol can alter source/sink relationships in potato to increase production efficiency and this may translate to reduced agronomic inputs. Application timing and concentration are important for modulating tuber set and size.

Resumen

El fenotipo de crecimiento vigoroso de “Bondi” es característico de altas giberelinas endógenas, que lo hacen ideal para evaluar la eficacia de los inhibidores de la biosíntesis de giberelinas para mejorar la partición alométrica y la eficiencia en la producción de papa. Aplicaciones foliares de calcio-prohexadione disminuyeron el crecimiento foliar sin efecto en número de tubérculos, tamaño o rendimiento. En contraste, cuando se aplicó en pre-tuberización, el paclobutrazol disminuyó el máximo crecimiento foliar de 91 a 63 MT ha-1, aumentó los tubérculos por planta-1 de 6.4 a 8.9, y disminuyó el promedio del peso fresco de tubérculo de 296 a 188 g tubérculo-1 sin reducción en rendimiento de tubérculo, el cual incrementó efectivamente el índice de cosecha. No obstante, cuando se aplicó en la post-tuberización, PBZ redujo el máximo crecimiento foliar de 91 a 72 MT ha-1 sin efectos en el número de tubérculos, tamaño o rendimiento. El paclobutrazol puede alterar las relaciones fuente/demanda en papa para aumentar la eficiencia de producción y esto pudiera traducirse en la reducción de los insumos agronómicos. La calendarización en la aplicación, y la concentración, son importantes para modular el amarre y tamaño de tubérculo.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Arpiwi, N.L. 2003. The application of novel methods for increasing the yield of small round seed potatoes (Solanum tuberosum L.) varieties Atlantic and granola. School of Plant Biology: MS Thesis, University of Western Australia.

  2. Beam, J.B., and S.D. Askew. 2007. Fate of prohexadione calcium in annual bluegrass (Poa annua) and three turfgrasses. Weed Science 55: 541–545.

  3. Binenbaum, J., R. Weinstain, and E. Shani. 2018. Gibberellin localization and transport in plants. Trends in Plant Science 23: 410–421.

  4. Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.

  5. Bolotova, Y., and P.E. Patterson. 2009. An analysis of contracts in the Idaho processing-potato industry. Journal of Food Distribution Research 40: 32–38.

  6. Bömke, C., and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876–1893.

  7. Brown, R.G.S., H. Kawaide, Y. Yang, W. Rademacher, and Y. Kamiya. 1997. Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiologia Plantarum 101: 309–313.

  8. Caldiz, D.O., A. Clúa, J. Beltrano, and S.D. Tenenbaum. 1998. Ground cover, photosynthetic rate and tuber yield of potato (Solanum tuberosum L.) crops from seed tubers with different physiological age modified by foliar applications of plant growth regulators. Potato Research 41: 175–185.

  9. Carrera, E., S.D. Jackson, and S. Prat. 1999. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiology 119: 765–773.

  10. Carrera, E., J. Bou, J.L. Garcia-Martinez, and S. Prat. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal 22 (3): 247–256.

  11. Davière, J., and P. Achard. 2013. Gibberellin signaling in plants. Development 140: 1147–1151.

  12. Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018. Efficacy of seed aging and gibberellin treatments for manipulating apical dominance, tuber set and size distribution of cv. Shepody. American Journal of Potato Research 95: 526–538.

  13. Evans, J.R., R.R. Evans, and C.L. Regusci. 1999. Mode of action, metabolism, and uptake of BAS 125W, prohexadione-calcium. HortScience 34: 1200–1201.

  14. Gonzalez, N., S. De Bodt, R. Sulpice, Y. Jikumaru, E. Chae, S. Dhondt, T. Van Daele, L. De Milde, D. Weigel, Y. Kamiya, M. Stitt, G.T. Beemster, and D. Inzé. 2010. Increased leaf size: Different means to an end. Plant Physiology 153: 1261–1279.

  15. Gould, W.A. 1999. Potato production, processing, and technology. Cambridge: Woodhead Publishing.

  16. Greene, D.W. 1999. Tree growth management and fruit quality of apple trees treated with prohexadione-calciium (BAS 125). HortScience 34: 1209–1212.

  17. Hannapel, D.J., P. Sharma, T. Lin, and A.K. Banerjee. 2017. The multiple signals that control tuber formation. Plant Physiology 174: 845–856.

  18. Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution. American Journal of Potato Research 93 (4): 331–349.

  19. Hopkins, B.G., D.A. Horneck, M.J. Pavek, B.D. Geary, N.L. Olsen, J.W. Ellsworth, G.D. Newberry, J.S. Miller, R.E. Thornton, and G.W. Harding. 2007. Evaluation of potato production best management practices. American Journal of Potato Research 84: 19–27.

  20. Huang, S., A.S. Raman, J.E. Ream, H. Fujiwara, R.E. Cerny, and S.M. Brown. 1998. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiology 118: 773–781.

  21. Ilias, I., G. Ouzounidou, A. Giannakoula, and P. Papadopoulou. 2007. Effects of gibberellic acid and prohexadione-calcium on growth, chlorophyll fluorescence and quality of okra plant. Biologia Plantarum 51: 575–578.

  22. Kloosterman, B., and C. Bachem. 2014. Tuber development. In The potato: Botany, production and uses, ed. M.J. Pavek and R. Navarre, 45–63. Boston: CABI.

  23. Kloosterman, B., C. Navarro, G. Bijsterbosch, T. Lange, S. Prat, R.G.F. Visser, and C.W.B. Bachem. 2007. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. The Plant Journal 52: 362–373.

  24. Kumar, D., and P.F. Wareing. 1974. Studies on tuberization of Solanum andigena. II. Growth hormones and tuberization. New Phytologist 73: 833–840.

  25. Lang, N.S., R.G. Stevens, R.E. Thornton, W.L. Pan, and S. Victory. 1999. Nutrient management guide: Central Washington irrigated potatoes. Pullman: Washington State University Cooperative Extension.

  26. Lenfesty, C.M. 1967. Soil survey: Adams County, Washington. Washington D.C.

  27. Lo, S., T.D. Ho, Y. Liu, M. Jiang, K. Hsieh, K. Chen, L. Yu, M. Lee, C. Chen, T. Huang, M. Kojima, H. Sakakibara, L. Chen, and S. Yu. 2017. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology 15: 850–864.

  28. Mabvongwe, O., B.T. Manenji, M. Gwazane, and M. Chandiposha. 2016. The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). advances in agriculture 2016: https://doi.org/10.1155/2016/1585463.

  29. Oliveira, J.S. 2015. Growth and development of potato (Solanum tuberosum L.) crops after different cool season storage. PhD dissertation, Lincoln University, Department of Agricultural Sciences.

  30. Proebsting, W.M., P. Hedden, M.J. Lewis, S.J. Croker, and L.N. Proebsting. 1992. Gibberellin concentration and transport in genetic lines of pea. Plant Physiology 100: 1354–1360.

  31. Rademacher, W. 2000. Growth retardants: Effects of gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Molecular Biology 51: 501–531.

  32. Rademacher, W. 2016. Chemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews 49: 359–403.

  33. Rebetzke, G.J., M.H. Ellis, D.G. Bonnett, B. Mickelson, A.G. Condon, and R.A. Richards. 2012. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Research 126: 87–96.

  34. Schreiber, A., A. Jensen, S.I. Rondon, E.J. Wenninger, and S. Reitz. 2018. Integrated pest management guidelines for insects and mites in Idaho, Oregon, and Washington potatoes. http://www.nwpotatoresearch.com/wp-content/uploads/2018/07/PNW-Potato-IPM-2018-Final-for-web.pdf. Accessed 19 April 2019.

  35. Sharma, N., N. Kaur, and A.K. Gupta. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberization and growth of potato (Solanum tuberosum L). J. Sci Food Agric 78: 466–470.

  36. Smith, O.E., and L. Rapaport. 1969. Gibberellins, inhibitors, and tuber formation in the potato (Solanum tuberosum). Am Potato J 46: 185–191.

  37. Tekalign, T., and P.S. Hammes. 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regulation 45: 37–46.

  38. Weeda, S.M., G.N.M. Kumar, and N.R. Knowles. 2009. Developmentally linked changes in proteases and protease inhibitors suggest a role for potato multicystatin in regulating protein content of potato tubers. Planta 230: 73–84.

  39. Wohleb, C.H., N.R. Knowles, and M.J. Pavek. 2014. Plant growth and development. In the potato: Botany, production and uses, eds. D.A. Navarre and M.J. Pavek, Boston: CABI Press, ch 5 pp. 64–82.

  40. Xu, X., A.M. van Lammeren, E. Verneer, and D. Vreugdenhil. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology 117: 575–584.

Download references

Acknowledgements

Financial support was provided by the USDA Specialty Crop Block Grant program through the Washington State Department of Agriculture, and the Northwest Potato Research Consortium.

Author information

Correspondence to N. Richard Knowles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ellis, G.D., Knowles, L.O. & Knowles, N.R. Increasing the Production Efficiency of Potato with Plant Growth Retardants. Am. J. Potato Res. 97, 88–101 (2020) doi:10.1007/s12230-019-09759-y

Download citation

Keywords

  • Solanum tuberosum
  • Gibberellin inhibitors
  • Paclobutrazol
  • Harvest index
  • Tuber set
  • Tuber size distribution