Advertisement

American Journal of Potato Research

, Volume 96, Issue 6, pp 617–624 | Cite as

Recombinase Polymerase Amplification (RPA) for the Rapid Isothermal Detection of Spongospora subterranea f. sp. subterranea and Potato Mop-Top Virus

  • Joseph B. DeShields
  • Natalia Moroz
  • Lauren E. Braley
  • Guadalupe Arlene Mora-Romero
  • Kiwamu TanakaEmail author
Short Communication
  • 38 Downloads

Abstract

The amplification of specific nucleic acid sequences with high specificity and sensitivity is an essential technique for pathogen detection. Recombinase polymerase amplification (RPA) is a rapid isothermal amplification method. Here, we demonstrate the end-point and real-time detection of Spongospora subterranea f. sp. subterranea (Sss) using RPA and potato mop-top virus (PMTV) using reverse transcription (RT)-RPA. Oligonucleotide primers were designed for amplification that target the internal transcribed spacer 1 (ITS1) region and the coat protein readthrough (CP-RT) domain for the detection of Sss and PMTV, respectively. Our data showed that real-time RPA can detect 100 of Sss sporosori per gram of soil, while real-time RT-RPA could detect in ~1 ng total RNA of the PMTV-infected tuber. For Sss detection, the R2 value for real-time RPA and real-time PCR was 98.0% by linear regression analysis in the concentration range of 100–34,000 sporosori per gram of soil. The developed RPA assay here may provide a useful alternative tool for the rapid, simple and reliable detection of Sss and PMTV in diagnostic laboratories and in-field testing.

Keywords

Isothermal amplification-based pathogen detection Recombinase polymerase amplification (RPA) Real-time RPA Spongospora subterranea f. sp. subterranea (Sss) Potato mop-top virus (PMTV) 

Resumen

La amplificación de secuencias específicas de ácido nucléico con alta especificidad y sensibilidad, es una técnica esencial para la detección de patógenos. La ampliación de polimerasa de recombinación (RPA) es un método rápido de amplificación isotérmica. Aquí demostramos la detección final, y de tiempo real, de Spongospora subterranea f. sp. subterranea (Sss), usando RPA, y del virus del trapeador apical de la papa (PMTV), usando transcripción reversa (RT)-RPA. Los oligonucleótidos iniciadores se designaron para la amplificación que diera con el objetivo de la región del espaciador interno transcrito 1 (ITS1) y del dominio de la lectura completa de la cubierta proteica (CP-RT) para la detección de Sss y PMTV, respectivamente. Nuestros datos mostraron que la RPA de tiempo real puede detectar 100 esporosori de Sss por gramo de suelo, mientras que RT-RPA de tiempo real pudo detectar ~1 ng del ARN total en el tubérculo infectado con PMTV. Para la detección de Sss, el valor de R2 para RPA de tiempo real y PCR de tiempo real fue de 98.0% mediante el análisis de regresión lineal en la amplitud de concentración de 100–34,000 esporosori por gramo de suelo. El ensayo de RPA desarrollado pudiera proporcionar una herramienta alternativa útil para la detección simple y confiable de Sss y PMTV en laboratorios de diagnóstico y en pruebas de campo.

Notes

Acknowledgements

We are grateful to Drs. Richard Quick and Chuck Brown (USDA-ARS) for providing PMTV-infected tubers. Special thanks to Jacquie van der Waals (University of Pretoria) for finding us key literature on a topic. This research was supported by the Northwest Potato Research Consortium, the Washington State Department of Agriculture - Specialty Crop Block Grant Program (grant no. K1764), and USDA National Institute of Food and Agriculture (AFRI grant award no. 2019-67013-29963 and Hatch project no. 1015621) to K.T., and also by the Mexican National Council of Science and Technology (CONACyT) scholarship program to G.A.M.R. PPNS No. 0773, Department of Plant Pathology, College of Agriculture, Human and Natural Resource Sciences, Agricultural Research Center, Washington State University, Pullman, WA, 99164–6430, USA.

Supplementary material

12230_2019_9750_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1.25 MB)

References

  1. Bentahir, M., J. Ambroise, C. Delcorps, P. Pilo, and J.-L. Gala. 2018. Sensitive and specific Recombinase polymerase amplification assays for fast screening, detection, and identification of bacillus anthracis in a field setting. Applied and Environmental Microbiology 84: e00506–e00518.CrossRefGoogle Scholar
  2. Budziszewska, M., P. Wieczorek, K. Nowaczyk, N. Borodynko, H. Pospieszny, and A. Obrêpalska-Stêplowska. 2010. First report of potato mop-top virus on potato in Poland. Plant Disease 94: 920–920.CrossRefGoogle Scholar
  3. Bulman, S., J.M. Candy, M. Fiers, R. Lister, A.J. Conner, and C.C. Eady. 2011. Genomics of biotrophic, plant-infecting Plasmodiophorids using in vitro dual cultures. Protist 162: 449–461.CrossRefGoogle Scholar
  4. Calvert, E.L. 1968. The reaction of potato varieties to potato mop-top virus. Record of Agricultural Research. Ministry of Agriculture Northern Ireland 17: 31–40.Google Scholar
  5. Ciaghi, S., S. Neuhauser, and A. Schwelm. 2018. Draft genome resource for the potato powdery scab pathogen Spongospora subterranea. Molecular Plant-Microbe Interactions 31: 1227–1229.CrossRefGoogle Scholar
  6. Crosslin, J.M. 2011. First report of potato mop-top virus on potatoes in Washington state. Plant Disease 95: 1483–1483.CrossRefGoogle Scholar
  7. DeShields, J.B., R.A. Bomberger, J.W. Woodhall, D.L. Wheeler, N. Moroz, D.A. Johnson, and K. Tanaka. 2018. On-site molecular detection of soil-borne phytopathogens using a portable real-time PCR system. Journal of Visualized Experiments: e56891.Google Scholar
  8. Down, G.J., L.J. Grenville, and J.M. Clarkson. 2002. Phylogenetic analysis of Spongospora and implications for the taxonomic status of the plasmodiophorids. Mycological Research 106: 1060–1065.CrossRefGoogle Scholar
  9. Doyle, J.J. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  10. Euler, M., Y. Wang, P. Otto, H. Tomaso, R. Escudero, P. Anda, F.T. Hufert, and M. Weidmann. 2012. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. Journal of Clinical Microbiology 50: 2234–2238.CrossRefGoogle Scholar
  11. Gau, R.D., U. Merz, R.E. Falloon, and P.C. Brunner. 2013. Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f.sp. subterranea. PLoS One 8: e67944.CrossRefGoogle Scholar
  12. Gilchrist, E., J. Soler, U. Merz, and S. Reynaldi. 2011. Powdery scab effect on the potato Solanum tuberosum ssp. andigena growth and yield. Tropical Plant Pathology 36: 350–355.CrossRefGoogle Scholar
  13. Gill, P., and A. Ghaemi. 2008. Nucleic acid isothermal amplification technologies: A review. Nucleosides, Nucleotides & Nucleic Acids 27: 224–243.CrossRefGoogle Scholar
  14. Gutiérrez Sánchez, P.A., J.F. Alzate, and M. Marín Montoya. 2014. Analysis of carbohydrate metabolism genes of Spongospora subterranea using 454 pyrosequencing. Revista Facultad Nacional de Agronomía Medellín 67: 7247–7260.CrossRefGoogle Scholar
  15. Hu, X., V. Dickison, Y. Lei, C. He, M. Singh, Y. Yang, X. Xiong, and X. Nie. 2016. Molecular characterization of potato mop-top virus isolates from China and Canada and development of RT-PCR differentiation of two sequence variant groups. Canadian Journal of Plant Pathology 38: 231–242.CrossRefGoogle Scholar
  16. Jones, R.A.C., and B.D. Harrison. 1969. The behaviour of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. The Annals of Applied Biology 63: 1–17.CrossRefGoogle Scholar
  17. Kumar, G.N.M., S. Iyer, and N.R. Knowles. 2007. Extraction of RNA from fresh, frozen, and lyophilized tuber and root tissues. Journal of Agricultural and Food Chemistry 55: 1674–1678.CrossRefGoogle Scholar
  18. Mekuria, T.A., S. Zhang, and K.C. Eastwell. 2014. Rapid and sensitive detection of little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. Journal of Virological Methods 205: 24–30.CrossRefGoogle Scholar
  19. Moroz, N., K.R. Fritch, M.J. Marcec, D. Tripathi, A. Smertenko, and K. Tanaka. 2017. Extracellular Alkalinization as a defense response in potato cells. Frontiers in Plant Science 8: 32.CrossRefGoogle Scholar
  20. Morse, W.J. 1912. Does the potato scab organism survive passage through the digestive tract of domestic animals? Phytopathology 2: 146–149.Google Scholar
  21. Piepenburg, O., C.H. Williams, D.L. Stemple, and N.A. Armes. 2006. DNA detection using recombination proteins. PLoS Biology 4: e204.CrossRefGoogle Scholar
  22. Qian, W., Y. Lu, Y. Meng, Z. Ye, L. Wang, R. Wang, Q. Zheng, H. Wu, and J. Wu. 2018. Field detection of Citrus Huanglongbing associated with ‘Candidatus Liberibacter Asiaticus’ by recombinase polymerase amplification within 15 min. Journal of Agricultural and Food Chemistry 66: 5473–5480.CrossRefGoogle Scholar
  23. Rohrman, B., and R. Richards-Kortum. 2015. Inhibition of recombinase polymerase amplification by background DNA: A lateral flow-based method for enriching target DNA. Analytical Chemistry 87: 1963–1967.CrossRefGoogle Scholar
  24. Rojas, J.A., T.D. Miles, M.D. Coffey, F.N. Martin, and M.I. Chilvers. 2017. Development and application of qPCR and RPA genus- and species-specific detection of Phytophthora sojae and P. sansomeana root rot pathogens of soybean. Plant Disease 101: 1171–1181.CrossRefGoogle Scholar
  25. Silva, G., M. Bömer, C. Nkere, P.L. Kumar, and S.E. Seal. 2015. Rapid and specific detection of yam mosaic virus by reverse-transcription recombinase polymerase amplification. Journal of Virological Methods 222: 138–144.CrossRefGoogle Scholar
  26. Silva, G., J. Oyekanmi, C. Nkere, M. Bömer, P.L. Kumar, and S.E. Seal. 2018. Rapid detection of potyviruses from crude plant extracts. Analytical Biochemistry 546: 17–22.CrossRefGoogle Scholar
  27. Strayer-Scherer, A., J.B. Jones, and M.L. Paret. 2018. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 109: 690–700.CrossRefGoogle Scholar
  28. Tenorio, J., Y. Franco, C. Chuquillanqui, R.A. Owens, and L.F. Salazar. 2006. Reaction of potato varieties to potato mop-top virus infection in the Andes. American Journal of Potato Research 83: 423–431.CrossRefGoogle Scholar
  29. Valkonen, J.P.T. 2015. Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. Breeding Science 65: 69–76.CrossRefGoogle Scholar
  30. Xu, H., T.-L. DeHaan, and S.H. De Boer. 2004. Detection and confirmation of potato mop-top virus in potatoes produced in the United States and Canada. Plant Disease 88: 363–367.CrossRefGoogle Scholar
  31. Zhang, S.L., M. Ravelonandro, P. Russell, N. McOwen, P. Briard, S. Bohannon, and A. Vrient. 2014. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(R) using reverse transcription-recombinase polymerase amplification. Journal of Virological Methods 207: 114–120.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Department of Plant PathologyWashington State UniversityPullmanUSA
  2. 2.Unidad de Investigación en Ambiente y SaludUniversidad Autónoma de OccidenteLos MochisMexico

Personalised recommendations