Advertisement

American Journal of Potato Research

, Volume 96, Issue 6, pp 541–551 | Cite as

Nitrogen Fertilization Effects on the Composition of Foliar Amino Acids of Russet Burbank Potato

  • Guoqi Wen
  • Athyna N. CambourisEmail author
  • Noura Ziadi
  • Annick Bertrand
  • Mohamed Khelifi
Article
  • 15 Downloads

Abstract

Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an important pest of potato crops. Potato foliar amino acids play essential roles in CPB growth. In this study, amino acids were classified into four groups according to their different roles in promoting CPB growth. Then, nitrogen (N) rate effects on the concentrations of amino acid groups were investigated under field conditions. Experiments were carried out with five N rates of 0, 60, 120, 180, and 240 kg N ha−1 in a randomized complete block design. Twenty leaves were collected at 40, 54, 68, and 82 days after planting (DAP) for amino acids analysis. Results showed that N rate had no significant effect on concentrations of each amino acid group at 40 DAP. However, their concentrations linearly increased as N rate increased at 54, 68, and 82 DAP, suggesting that higher N rates could potentially favor CPB growth after potato enters tuber initiation stage.

Keywords

Herbivorous pest Mineral fertilizer N assimilation Foliar chemicals 

Abbreviations

GABA

γ-aminobutyric acid

AABA

α-aminobutyric acid

Gly

glycine

Asp

aspartate

Ala

alanine

Glu

glutamate

Pro

proline

Ser

serine

Asn

asparagine

Gln

glutamine

Arg

arginine

Val

valine

Ile

isoleucine

Leu

leucine

Met

methionine

Phe

phenylalanine

His

histidine

Lys

lysine

Thr

threonine

Tyr

tyrosine

Resumen

El escarabajo de la papa de Colorado (CPB), Leptinotarsa decemlineata (Say), es una plaga importante en los cultivos de papa. Los amonoácidos foliares de la papa juegan papeles esenciales en el crecimiento de CPB. En este estudio, se clasificaron los aminoácidos en cuatro grupos de acuerdo a sus diferentes funciones en la promoción del crecimiento del CPB. Se investigaron los efectos del nivel del nitrógeno (N) en las concentraciones de los grupos de aminoácidos bajo condiciones de campo. Se condujeron experimentos con cinco niveles de N, de 0, 60, 120, 180, y 240 kg N ha–1 en un diseño de bloques completamente al azar. Se colectaron 20 hojas a los 40, 54, 68, y 82 días después de la siembra (DAP) para el análisis de aminoácidos. Los resultados demostraron que el nivel del N no tuvo un efecto significativo en las concentraciones de cada uno de los grupos de aminoácidos a los 40 DAP. No obstante, sus concentraciones se aumentaron linealmente a medida que los niveles de N aumentaron a 54, 68, y 82 DAP, sugiriendo que niveles más altos de N pudieran favorecer potencialmente el crecimiento del CPB después de que la papa entra al estado de iniciación del tubérculo.

Notes

Acknowledgments

This study was supported by Agriculture and Agri-Food Canada (AAFC) through the Growing Forward program. The technical assistance of Sarah-Maude Parent, Mario Deschênes, Sandra Delaney, and Josée Bourassa from the Quebec Research and Development Centre, AAFC, is greatly appreciated. The first author acknowledges the Fonds de recherche du Québec – Nature et technologies (FRQNT) for providing him with a Ph.D. scholarship to study at Université Laval.

References

  1. Alyokhin, A. 2009. Colorado potato beetle management on potatoes: Current challenges and future prospects. Fruit, Vegetable and Cereal Science and Biotechnology 3: 10–19.Google Scholar
  2. Alyokhin, A., D. Mota-Sanchez, M. Baker, W.E. Snyder, S. Menasha, M. Whalon, G. Dively, and W.F. Moarsi. 2015. The red queen in a potato field: Integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Management Science 71(3): 343–356.CrossRefGoogle Scholar
  3. Bethke, P.C., A.M.K. Nassar, S. Kubow, Y.N. Leclerc, X.Q. Li, M. Haroon, T. Molen, J. Bamberg, M. Martin, and D.J. Donnelly. 2014. History and origin of Russet Burbank (Netted Gem) a sport of Burbank. American Journal of Potato Research 91(6): 594–609.CrossRefGoogle Scholar
  4. Boiteau, G. 2010. Insect pest control on potato: Harmonization of alternative and conventional control methods. American Journal of Potato Research 87(5): 412–419.CrossRefGoogle Scholar
  5. Boiteau, G., D.H. Lynch, and R.C. Martin. 2008. Influence of fertilization on the Colorado potato beetle, Leptinotarsa decemlineata, in organic potato production. Environmental Entomology 37(2): 575–585.PubMedGoogle Scholar
  6. Bouché, N., and H. Fromm. 2004. GABA in plants: just a metabolite? Trends in Plant Science 9(3): 110–115.CrossRefGoogle Scholar
  7. Brouwers, E.V.M., and C.A.D. de Kort. 1979. Amino acid metabolism during flight in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology 25(5): 411–414.CrossRefGoogle Scholar
  8. Cambouris, A.N., B.J. Zebarth, M.C. Nolin, and M.R. Laverdière. 2007. Response to added nitrogen of a continuous potato sequence as related to sand thickness over clay. Canadian Journal of Plant Science 87(4): 829–839.CrossRefGoogle Scholar
  9. Carillo, P., G. Mastrolonardo, F. Nacca, and A. Fuggi. 2005. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology 32(3): 209–219.CrossRefGoogle Scholar
  10. Cibula, A.B., R.H. Davidson, F.W. Fisk, and J.B. Lapidus. 1967. Relationship of free amino acids of some Solanaceous plants to growth and development of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 60(3): 626–631.CrossRefGoogle Scholar
  11. Cohen, S.A. 2000. Amino acid analysis using precolumn derivatization with 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate, in C. Cooper, N. Packer & K. Williams (ed.). Amino Acid Analysis Protocols. Humana Press, Totowa, NJ, USA, pp. 39–47.Google Scholar
  12. CRAAQ. 2010. Centre de référence en agriculture et agroalimentaire du Québec. Guide de référence en fertilisation, 2nd ed. Google Scholar
  13. DeFauw, S.L., Z. He, R.P. Larkin, and S.A. Mansour. 2012. Sustainable potato production and global food security, in Z. He, R. Larkin, and W. Honeycutt (ed.). Sustainable potato production: Global case studies. Dordrecht: Springer, pp. 3–19. CrossRefGoogle Scholar
  14. Domek, J.M., W.W. Cantelo, R.M. Wagner, B.W. Li, and N.J. Miller-Ihli. 1995. Nutritional composition of potato foliage. Journal of Agricultural and Food Chemistry 43: 1512–1515.CrossRefGoogle Scholar
  15. Fageria, N.K., and V.C. Baligar. 2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy 88: 97–185.CrossRefGoogle Scholar
  16. Forde, B.G., and P.J. Lea. 2007. Glutamate in plants: Metabolism, regulation, and signalling. Journal of Experimental Botany 58(9): 2339–2358.CrossRefGoogle Scholar
  17. Geiger, M., V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt. 1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell & Environment 22(10): 1177–1199.CrossRefGoogle Scholar
  18. Gelman, D.B., M.G. Rojas, T.J. Kelly, J.S. Hu, and R.A. Bell. 2000. Ecdysteroid and free amino acid content of eggs of the Colorado potato beetle. Leptinotarsa decemlineata. Archives of Insect Biochemistry and Physiology 44(4): 172–182.CrossRefGoogle Scholar
  19. Harris, P. 2012. The potato crop: The scientific basis for improvement. Dordrecht, Netherlands: Springer Science & Business Media.Google Scholar
  20. He, Z., R. Larkin, and W. Honeycutt. 2012. Sustainable potato production: Global case studies. Dordrecht, Netherlands: Springer Science & Business Media.Google Scholar
  21. Hendershot, W.H., H. Lalande, and M. Duquette. 2008. Soil reaction and exchangeable acidity, in M.R. Carter and E.G. Gregorich (ed.). Soil sampling and methods of analysis, Ch. 16. CRC Press, pp. 173–178.Google Scholar
  22. Hsiao, T.H., and G. Fraenkel. 1968. The influence of nutrient chemicals on the feeding behavior of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 61(1): 44–54.CrossRefGoogle Scholar
  23. Lea, P.J., L. Sodek, M.A.J. Parry, P.R. Shewry, and N.G. Halford. 2007. Asparagine in plants. Annals of Applied Biology 150(1): 1–26.CrossRefGoogle Scholar
  24. Liu, F., C.R. Jensen, A. Shahanzari, M.N. Andersen, and S.E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science 168(3): 831–836.CrossRefGoogle Scholar
  25. Martin, C., and K.V. Thimann. 1972. The role of protein synthesis in the senescence of leaves: I. The formation of protease. Plant Physiology 49(1): 64–71.CrossRefGoogle Scholar
  26. Maynard, D.G., Y.P. Kalra, and J.A. Crumbaugh. 2008. Nitrate and exchangeable ammonium nitrogen, in M.R. Carter and E.G. Gregorich (ed.). Soil sampling and methods of analysis, Ch. 6. CRC Press, pp. 71–80.Google Scholar
  27. Meza-Basso, L., P. Guarda, D. Rios, and M. Alberdi. 1986. Changes in free amino acid content and frost resistance in Nothofagus dombeyi leaves. Phytochemistry 25(8): 1843–1846.CrossRefGoogle Scholar
  28. Muttucumaru, N., A.J. Keys, M.A.J. Parry, S.J. Powers, and N.G. Halford. 2014. Photosynthetic assimilation of 14C into amino acids in potato (Solanum tuberosum) and asparagine in the tubers. Planta 239(1): 161–170.CrossRefGoogle Scholar
  29. Nassar, A.M.K., E. Ortiz-Medina, Y. Leclerc, and D.J. Donnelly. 2008. Periclinal chimera status of New Brunswick ‘Russet Burbank’ potato. American Journal of Potato Research 85: 432–437.CrossRefGoogle Scholar
  30. Olsen, R.W., and T.M. DeLorey. 1999. GABA synthesis, uptake and release, in G.J. Siegel, B.W. Agranoff, R.W. Albers, S.K. Fisher, and M.D. Uhler (ed.). Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Lippincott-Raven, Philadelphia Available from: https://www.ncbi.nlm.nih.gov/books/NBK27979/.
  31. Pérez-García, A., S. Pereira, J. Pissarra, A.G. Gutiérrez, F.M. Cazorla, R. Salema, A. de Vicente, and F.M. Cánovas. 1998. Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta 206(3): 426–434.CrossRefGoogle Scholar
  32. Scott, I.M., J.H. Tolman, and D.C. MacArthur. 2015. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Management Science 71(5): 712–721.CrossRefGoogle Scholar
  33. Srivastava, A.K., and S. Singh. 2006. Biochemical markers and nutrient constraints diagnosis in citrus: A perspective. Journal of Plant Nutrition 29(5): 827–855.CrossRefGoogle Scholar
  34. Stark, J., D. Westermann, and B. Hopkins. 2004. Nutrient management guidelines for Russet Burbank potatoes. University of Idaho, College of Agricultural and Life Sciences, Extension Bulletin No. 840: 1–12.Google Scholar
  35. Statistics Canada, 2016. CANSIM (database). Table 001-0014: Area production and farm value of potatoes.Google Scholar
  36. The Canadian system of soil classification, 3rd ed. 1998. Agriculture and Agri-Food Canada, NRC Research Press, Ottawa, Canada.Google Scholar
  37. Tomlin, E.S., and M.K. Sears. 1992. Indirect competition between the Colorado potato beetle (Coleoptera: Chrysomelidae) and the potato leafhopper (Homoptera: Cicadellidae) on potato: Laboratory study. Environmental Entomology 21(4): 787–792.CrossRefGoogle Scholar
  38. Urbanczyk-Wochniak, E., C. Baxter, A. Kolbe, J. Kopka, L.J. Sweetlove, and A.R. Fernie. 2005. Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221(6): 891–903.CrossRefGoogle Scholar
  39. Vos, J., and H. Biemond. 1992. Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life spans of leaves and stem branching. Annals of Botany 70(1): 27–35.CrossRefGoogle Scholar
  40. Wen, G., A.N. Cambouris, A. Bertrand, N. Ziadi, H. Li, and M. Khelifi. 2019b. Nitrogen fertilization effects on the leaf chemical concentrations in Russet Burbank potato. Field Crops Research 232: 40–48.CrossRefGoogle Scholar
  41. Wen, G., M. Khelifi, A.N. Cambouris, and N. Ziadi. 2019a. Responses of the Colorado potato beetle (Coleoptera: Chrysomelidae) to the chemical composition of potato plant foliage. Potato Research 62: 157–173.CrossRefGoogle Scholar
  42. Westermann, D.T. 1993. Fertility management, in R.C. Rowe (ed.). Potato health management, Ch. 9. APS Press, pp. 77–86.Google Scholar
  43. Yang, X.B., N.S.A. Malik, J.L. Perez, and T.X. Liu. 2011. Impact of potato psyllid (Hemiptera: Triozidae) feeding on free amino acid composition in potato. Insect Science 18(6): 663–670.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Guoqi Wen
    • 1
    • 2
  • Athyna N. Cambouris
    • 1
    Email author
  • Noura Ziadi
    • 1
  • Annick Bertrand
    • 1
  • Mohamed Khelifi
    • 2
  1. 1.Quebec Research and Development Centre, Agriculture and Agri-Food CanadaQCCanada
  2. 2.Department of Soils and Agri-Food EngineeringUniversité LavalQCCanada

Personalised recommendations