Advertisement

American Journal of Potato Research

, Volume 96, Issue 6, pp 532–540 | Cite as

Seasonal Dynamics of Alternaria during the Potato Growing Cycle and the Influence of Weather on the Early Blight Disease in North-West Spain

  • Olga Escuredo
  • Ana Seijo-Rodríguez
  • Laura Meno
  • María Shantal Rodríguez-Flores
  • María Carmen SeijoEmail author
Article
  • 33 Downloads

Abstract

Early blight caused mainly by Alternaria solani Soraeur and Alternaria alternata (Fr.) Keissl is one of the main diseases of potato. To improve forecasting of disease risk and to provide useful tools for a good decision support system, knowledge about the influence of environmental conditions on the Alternaria species, is necessary. The pattern distribution of the Alternaria spores during eight potato growing cycles in “A Limia” (north-west Spain), and the relationships between Alternaria levels and meteorological parameters were analyzed. Also, the phenology of the potato plants and the meteorological conditions during the study were monitored. Higher Alternaria peaks were found during plant senescence. Nevertheless, extremely high levels can appear starting the plant flowering, when the disease is more destructive. Statistical analysis showed a close relationship between temperature and relative humidity with the concentration of Alternaria in the air. Higher Alternaria levels were observed with a mean temperature above 20 °C and a mean relative humidity below 70%. It is also important to highlight that lower temperature and higher relative humidity during the night, favours the formation of Alternaria spores during the day. The present study showed how differences in weather can be related with the presence of Alternaria spores in the atmosphere of potato crop, and how climate change could affect the development of this agricultural crop. If Spain continues to experience increases in temperature events, longer duration and increasing intensity of early blight epidemics in potato crops are expected in future years.

Keywords

Potato Growing season Temperature Early blight Climatic trend 

Resumen

El tizón temprano, causado por Alternaria solani Soraeur y Alternaria alternata (Fr.) Keissl, es una de las principales enfermedades de la patata. Para mejorar la previsión del riesgo de la enfermedad y para proporcionar herramientas útiles para un buen sistema de toma de decisiones es necesario el conocimiento de la influencia de las condiciones ambientales en el desarrollo de Alternaria. Se analizó el patrón de distribución de las esporas de Alternaria durante ocho ciclos de cultivo de la patata en “A Limia” (noroeste de España), y las relaciones entre los niveles de Alternaria y los parámetros meteorológicos. También se monitorearon la fenología de las plantas de py las condiciones meteorológicas durante el estudio. Se encontraron altos picos de Alternaria durante la senectud de la planta. No obstante, pueden aparecer niveles extremadamente altos empezando la floración, cuando la enfermedad es más destructiva. Los análisis estadísticos mostraron una relación estrecha entre temperatura y humedad relativa con la concentración de Alternaria en el aire. Se observaron niveles más altos de Alternaria con una temperatura media con una temperatura media superior a los 20 °C y una media de humedad relativa Inferior al del 70%. También es importante resaltar que temperatura más baja y humedad relativa más alta durante la noche, favorecen la formación de esporas de Alternaria durante el día. El presente estudio mostró como las diferencias en el clima pudieran estar relacionadas con la presencia de las esporas de Alternaria en la atmosfera del cultivo de la patata, y como el cambio climático puede afectar al desarrollo de este cultivo agrícola. Si España continúa experimentando eventos de incremento de la temperatura, se espera en el futuro una mayor duración e intensidad de las epidemias de tizón temprano en cultivos de patata.

Notes

Acknowledgments

The authors wish to thank the collaboration of Xunta de Galicia (Rural Development Programme 2014/2020- FEADER 2017/045B) for the financial supporting.

Compliance with Ethical Standards

Conflict of Interests

None.

References

  1. Abuley, I.K. 2015. Decision support system in the control of potato early blight (Alternaria solani and Alternaria alternata). MSc Agrobiology Plant Nutrition and Health MSc: Aarhus University.Google Scholar
  2. Abuley, I.K., and B.J. Nielsen. 2017. Evaluation of models to control potato early blight (Alternaria solani) in Denmark. Crop Protection 102: 118–128.CrossRefGoogle Scholar
  3. Aira, M., F.J. Rodriguez-Rajo, M. Fernández-González, M.C. Seijo, B. Elvira, I. Abreu, et al. 2013. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology 57 (2): 265–274.PubMedCrossRefGoogle Scholar
  4. Dang, H.X., B. Pryor, T. Peever, and C.B. Lawrence. 2015. The Alternaria genomes database: A comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16(1): 239. Google Scholar
  5. De Linares, C., J. Belmonte, M. Canela, C. Díaz de la Guardia, F. Alba-Sánchez, S. Sabariego, et al. 2010. Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology 150: 1491–1500.CrossRefGoogle Scholar
  6. Escuredo, O., A. Seijo-Rodríguez, M.S. Rodríguez-Flores, and M.C. Seijo. 2019. Decision support systems for detecting aerial potato Phytophthora infestans sporangia in north-West Spain. Agronomy Journal 111(1): 354–361.CrossRefGoogle Scholar
  7. Escuredo, O., M.C. Seijo, M. Fernández-González, and I. Iglesias. 2011. Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology 55 (2): 243–252.PubMedCrossRefGoogle Scholar
  8. Fernández-González, M., F.J. Rodríguez-Rajo, O. Escuredo, and M.J Aira. 2013. Optimization of integrated pest management for powdery mildew (Uncinula necator) control in a vineyard based on a combination of phenological, meteorological and aerobiological data. The Journal of Agricultural Science 151(5): 648–658.CrossRefGoogle Scholar
  9. Fernández-Rodríguez, S., M. Sadyś, M. Smith, R. Tormo-Molina, C.A. Skjøth, J.M. Maya-Manzano, et al. 2015. Potential sources of airborne Alternaria spp. spores in south-West Spain. Science of the Total Environment 533: 165–176.PubMedCrossRefGoogle Scholar
  10. Galán, C., P. Cariñanos, P. Alcázar, and E. Domínguez. 2007. Spanish aerobiology network (REA): Management and quality manual. Córdoba: University of Córdoba Publication Service.Google Scholar
  11. Gordo, O., and J.J. Sanz. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology 16: 1082–1106.CrossRefGoogle Scholar
  12. Grinn-Gofroń, A., A. Strzelczak, D. Stepalska, and D. Myszkowska. 2016. A 10-year study of Alternaria and Cladosporium in two polish cities (Szczecin and Cracow) and relationship with the meteorological parameters. Aerobiologia 32: 83–94.PubMedCrossRefGoogle Scholar
  13. Hack, H., H. Gall, T.H. Klemke, R. Klose, U. Meier, R. Stauss, et al. 1993. Phänologische entwicklungsstadien der Kartoffel (Solanum tuberosum L.). Codierung und Beschreibung nach der erweiterten BBCH-Skala mit Abbildungen. Nachrichtenbl Deut Pflanzenschutzd 45: 11–19.Google Scholar
  14. Iglesias, I., O. Escuredo, M.C. Seijo, and J. Méndez. 2010. Phytophthora infestans prediction for a potato crop. American Journal of Potato Research 87 (1): 32–40.CrossRefGoogle Scholar
  15. Jönsson, A.M., B. Pulatov, M.L. Linderson, and K. Hall. 2013. Modelling as a tool for analysing the temperature-dependent future of the Colorado potato beetle in Europe. Global Change Biology 19: 1043–1055.PubMedCrossRefGoogle Scholar
  16. Kapsa, J.S. 2008. Important threats in potato production and integrated pathogen/Pest management. Potato Research 51: 385–401.CrossRefGoogle Scholar
  17. Kasprzyk, I., V. Rodinkova, I. Sauliene, O. Ritenberga, A. Grinn-Gofroń, M. Nowak, et al. 2015. Air pollution by allergenic spores of the genus Alternaria in the air of central and Eastern Europe. Environmental Science and Pollution Research 22: 9260–9274.PubMedCrossRefGoogle Scholar
  18. Kocmánková, E., M. Trnka, J. Eitzinger, H. Formayer, M. Dubrovský, D. Semerádová, et al. 2010. Estimating the impact of climate change on the occurrence of selected pests in the central European region. Climate Research 44 (1): 95–105.CrossRefGoogle Scholar
  19. Kokaeva, L.Y., A.F. Belosokhov, L.Y. Doeva, E.S. Skolotneva, and S.N. Elansky. 2018. Distribution of Alternaria species on blighted potato and tomato leaves in Russia. Jorunal Plant Diseases Protection 125: 205–212.Google Scholar
  20. Leiminger, J., G. Bahnweg, and H. Hausladen. 2014. Differentiation of Alternaria species and quantification of disease development using real-time PCR. Euroblight. PPO-Special Report. Wageningen University Lelystad. The Netherland 16: 189–194.Google Scholar
  21. Leiminger, J., and H. Hausladen. 2012. Early blight control in potatoes using disease orientated threshold values. Plant Disease 96 (1): 124–130.PubMedCrossRefGoogle Scholar
  22. Maya-Manzano, J.M., S. Fernández-Rodríguez, F. Hernández-Trejo, G. Díaz-Pérez, A. Gonzalo-Garijo, I. Silva-Palacios, et al. 2012. Seasonal Mediterranean pattern for airborne spores of Alternaria. Aerobiologia 28 (4): 515–525.CrossRefGoogle Scholar
  23. Maya-Manzano, J.M., M. Muñoz-Triviño, S. Fernández-Rodríguez, I. Silva-Palacios, A. Gonzalo-Garijo, and R. Tormo-Molina. 2016. Airborne Alternaria conidia in Mediterranean rural environments in SW of Iberian Peninsula and weather parameters that influence their seasonality in relation to climate change. Aerobiologia 32 (1): 95–108.CrossRefGoogle Scholar
  24. Meng, J.W., W. Zhu, M.H. He, E.J. Wu, G.H. Duan, Y.K. Xie, et al. 2015. Population genetic analysis reveals cryptic sex in the phytopathogenic fungus Alternaia alternata. Scientific Reports 5: 18250.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Munuera, M., J.S. Carrión, and C. Navarro. 2001. Airborne Alternaria spores in SE Spain (1993–98): Occurrence patterns, relationship with weather variables and prediction models. Grana 40: 111–118.CrossRefGoogle Scholar
  26. National Weather Service. 2018. Meteogalicia: Xunta de Galicia. Available at http://www.meteogalicia.es/
  27. Olanya, O.M., C.W. Honeycutt, R.P. Larkin, T.S. Griffin, Z. He, and J.M. Halloran. 2009. The effect of cropping systems and irrigation management on development of potato early blight. Journal of General Plant Pathology 75: 267–275.CrossRefGoogle Scholar
  28. Pereira-Machado, P., F. Steiner, A.M. Zuffo, and R. Alves-Machado. 2018. Could the supply of boron and zinc improve resistance of potato to early blight? Potato Research 61: 169–182.CrossRefGoogle Scholar
  29. Rodríguez-Rajo, F.J., V. Jato, M. Fernández-González, and M.J. Aira. 2010. The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49: 56–65.CrossRefGoogle Scholar
  30. Rotem, J. 1994. The genus Alternaria: Biology, epidemiology and pathogenicity. St. Paul, MN, USA: American Phytopathological Society Press.Google Scholar
  31. Runno-Paurson, E., K. Loit, M. Hansen, B. Tein, I.H. Williams, and M. Mänd. 2015. Early blight destroys potato foliage in the northern Baltic region. Acta Agriculturae Scandinavica Section B, Soil and Plant Science 65: 422–432.Google Scholar
  32. Sadyś, M., R. Kennedy, and J.S. West. 2016. Potential impact of climate change on fungal distributions: Analysis of 2 years of contrasting weather in the UK. Aerobiologia 32: 127–137.CrossRefGoogle Scholar
  33. Saiyed, I.M., P.R. Bullock, H.D. Sapirstein, G.J. Finlay, and C.K. Jarvis. 2009. Thermal time models for estimating wheat phenological development and weather-based relationships to wheat quality. Canadian Journal of Plant Science 89 (3): 429–439.CrossRefGoogle Scholar
  34. Seijo-Rodríguez, A., O. Escuredo, M.S. Rodríguez-Flores, and M.C. Seijo. 2018. Improving the use of aerobiological and phenoclimatological data to forecast the risk of late blight in a potato crop. Aerobiologia 34 (3): 315–324.CrossRefGoogle Scholar
  35. Skjøth, C.A., A. Damialis, J. Belmonte, C. De Linares, S. Fernández-Rodríguez, A. Grinn-Gofroń, et al. 2016. Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia 32 (1): 3–22.CrossRefGoogle Scholar
  36. Thomma, B. 2003. Alternaria spp.: From general saprophyte to specific parasite. Molecular Plant Pathology 4: 225–236.PubMedCrossRefGoogle Scholar
  37. Tymon, L.S., T.L. Peever, and D.A. Johnson. 2016. Identification and enumeration of small-spored Alternaria species associated with potato in the US northwest. Plant Disease 100 (2): 465–472.PubMedCrossRefGoogle Scholar
  38. Van der Waals, J.E., L. Korsten, and T.A.S. Aveling. 2001. A review of early blight of potatoes. African Plant Protection 7 (2): 91–102.Google Scholar
  39. Vloutoglou, I., and S.N. Kalogerakis. 2000. Effects of inoculum concentration, wetness duration and plant age on development of early blight (Alternaria solani) and on shedding of leaves in tomato plants. Plant Pathology 49 (3): 339–345.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Olga Escuredo
    • 1
  • Ana Seijo-Rodríguez
    • 1
  • Laura Meno
    • 1
  • María Shantal Rodríguez-Flores
    • 1
  • María Carmen Seijo
    • 1
    Email author
  1. 1.Department of Vegetal Biology and Soil Science, Faculty of ScienceUniversity of VigoOurenseSpain

Personalised recommendations