Advertisement

Genetic Mapping of Steroidal Glycoalkaloids Using Selective Genotyping in Potato

  • Jamuna Risal PaudelEmail author
  • Kyle M. Gardner
  • Benoit Bizimungu
  • David De Koeyer
  • Jun Song
  • Helen H. Tai
Article

Abstract

Steroidal glycoalkaloids (SGAs) are important secondary metabolites in potato which are associated with constitutive host defense mechanism. SGAs like leptines and dehydrocommersonine (DHC) present in wild S. chacoense and S. oplocense, respectively, are known to deter Colorado potato beetle (CPB) feeding. In the current study, LC-MS analysis led to tentative identification of a new SGA with the same molecular mass as α-solanine, solanidenol-chacotriose (SC), which was present in high levels in the CPB susceptible S. tuberosum cv. Shepody, but not in S. oplocense. In a progeny derived from a cross between S. tuberosum, cv. Shepody and S. oplocense derived F1 hybrid, 13213–07, SC was one of the highly variable metabolites along with DHC. Selective genotyping was used for genetic mapping of QTL controlling SC and DHC to chromosome 1. Selective genotyping is dependent on variation between extremes in populations, and it was not effective for QTL mapping of α-solanine and α-chaconine where differences between extremes was low.

Keywords

Steroidal glycoalkaloids (SGAs) Potato germplasm Genotyping by sequencing (GBS) Single nucleotide polymorphism (SNP) Colorado potato beetle (CPB) 

Resumen

Los glicoalcaloides esteroidales (SGAs) son metabolitos secundarios importantes en papa, que están asociados con un mecanismo de defensa constitutivo del hospedante. SGAs, como las leptinas y dehidrocomersonina (DHC) presentes en las especies silvestres S. chacoense y S. oplocense, respectivamente, se sabe que desalientan al escarabajo de colorado (CPB) para su alimentación. En el presente estudio, el análisis de LC-MS condujo a la identificación tentativa de un nuevo SGA con la misma masa molecular como α-solanina, solanidenol-chacotriosa (SC), que estaba presente en altos niveles en S. tuberosum cv. Shepody, susceptible al CPB, pero no en S. oplocense. En una progenie derivada de la cruza entre S. tuberosum, cv. Shepody y S. oplocense se derivó un híbrido F1, 13213–07, SC fue uno de los metabolitos altamente variables junto con DHC. Se usó genotipación selectiva para el mapa genético de QTL que controla SC y DHC en el cromosoma 1. La genotipación selectiva depende de la variación entre extremos en poblaciones, y no fue efectiva para el mapeo por QTL de α-solanina y α-chaconina donde la diferencia entre los extremos fue baja.

Notes

Acknowledgements

We thank Leslie Campbell for running MS and collecting metabolomics data, Katheryn Douglass for DNA sequencing, Catherine Clark for providing support for evaluation of CPB defoliation in field conditions, Charlotte Davidson for technical assistance and arrangements in lab, and Woojong Rho and Jaclyn Retallick for collecting leaf samples from 100 potato germplasm lines and helping in DNA extractions.

Compliance with Ethical Standards

Conflict of Interest

The authors have no conflict of interest to disclose.

Supplementary material

12230_2019_9734_Fig6_ESM.png (85 kb)
Supplementary figure S1

Total ion chromatograph for two parents a) S. tuberosum cv Shepody and b) 13213–07. (PNG 84 kb)

12230_2019_9734_MOESM1_ESM.eps (877 kb)
High Resolution Image (EPS 877 kb)
12230_2019_9734_Fig7_ESM.png (223 kb)
Supplementary figure S2

Known genes involved in steroidal gycoalkaloid (SGA) biosynthesis pathway. A) Physical location of SGA biosynthesis genes. Letter ‘a’ and ‘b’ indicate known genes in primary and secondary pathways, respectively, in SGA biosynthesis as shown in B. b) Schematic diagram of SGA biosynthesis pathway with intermediate products and genes involved. (PNG 223 kb)

12230_2019_9734_MOESM2_ESM.eps (1.1 mb)
High Resolution Image (EPS 1102 kb)
12230_2019_9734_MOESM3_ESM.docx (33 kb)
ESM 1 (DOCX 33 kb)

References

  1. Bolger, A.M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.CrossRefGoogle Scholar
  2. Cárdenas, P.D., P.D. Sonawane, U. Heinig, S.E. Bocobza, S. Burdman, and A. Aharoni. 2015. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry 113: 24–32.CrossRefGoogle Scholar
  3. Cárdenas, P.D., P.D. Sonawane, J. Pollier, R. Vanden Bossche, V. Dewangan, E. Weithorn, L. Tal, S. Meir, I. Rogachev, S. Malitsky, A.P. Giri, A. Goossens, S. Burdman, and A. Aharoni. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7.Google Scholar
  4. Choe, S., A. Tanaka, T. Noguchi, S. Fujioka, S. Takatsuto, A.S. Ross, F.E. Tax, S. Yoshida, and K.A. Feldmann. 2000. Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. The Plant Journal 21: 431–443.CrossRefGoogle Scholar
  5. Churchill, G.A., and R.W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.Google Scholar
  6. Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, R.E. Handsaker, G. Lunter, G.T. Marth, and S.T. Sherry. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158.CrossRefGoogle Scholar
  7. Darvasi, A., and M. Soller. 1992. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theoretical and Applied Genetics 85: 353–359.CrossRefGoogle Scholar
  8. Distl, M., and M. Wink. 2009. Identification and quantification of steroidal alkaloids from wild tuber-bearing solanum species by HPLC and LC-ESI-MS. Potato Research 52: 79–104.CrossRefGoogle Scholar
  9. Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379.CrossRefGoogle Scholar
  10. Field, B., A.-S. Fiston-Lavier, A. Kemen, K. Geisler, H. Quesneville, and A.E. Osbourn. 2011. Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proceedings of the National Academy of Sciences 108: 16116–16121.CrossRefGoogle Scholar
  11. Friedman, M., G.M. McDonald, and M. Filadelfi-Keszi. 1997. Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Critical Reviews in Plant Sciences 16: 55–132.CrossRefGoogle Scholar
  12. Ginzberg, I., J.G. Tokuhisa, and R.E. Veilleux. 2009. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research 52: 1–15.CrossRefGoogle Scholar
  13. Ginzberg, I., M. Thippeswamy, E. Fogelman, U. Demirel, A.M. Mweetwa, J. Tokuhisa, and R.E. Veilleux. 2012. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta 235: 1341–1353.CrossRefGoogle Scholar
  14. Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, and C.R. Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114: E9999–E10008.CrossRefGoogle Scholar
  15. Hutvágner, G., Z. Bánfalvi, I. Milánkovics, D. Silhavy, Z. Polgár, S. Horváth, P. Wolters, and J.P. Nap. 2001. Molecular markers associated with leptinine production are located on chromosome 1 in Solanum chacoense. Theoretical and Applied Genetics 102: 1065–1071.CrossRefGoogle Scholar
  16. Itkin, M., I. Rogachev, N. Alkan, T. Rosenberg, S. Malitsky, L. Masini, S. Meir, Y. Iijima, K. Aoki, R. de Vos, D. Prusky, S. Burdman, J. Beekwilder, and A. Aharoni. 2011. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23: 4507–4525.CrossRefGoogle Scholar
  17. Itkin, M., U. Heinig, O. Tzfadia, A.J. Bhide, B. Shinde, P.D. Cardenas, S.E. Bocobza, T. Unger, S. Malitsky, R. Finkers, Y. Tikunov, A. Bovy, Y. Chikate, P. Singh, I. Rogachev, J. Beekwilder, A.P. Giri, and A. Aharoni. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341: 175–179.CrossRefGoogle Scholar
  18. Jiang, J., C. Zhang, and X. Wang. 2013. Ligand perception, activation, and early signaling of plant steroid receptor Brassinosteroid insensitive 1. Journal of Integrative Plant Biology 55: 1198–1211.CrossRefGoogle Scholar
  19. Kaminski, K.P., K. Kørup, M.N. Andersen, M. Sønderkær, M.S. Andersen, H.G. Kirk, and K.L. Nielsen. 2016. Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Research 59: 81–97.CrossRefGoogle Scholar
  20. King, R.R., and L.A. Calhoun. 2012. Complete 1H and 13C NMR spectral assignments for the glycoalkaloid dehydrocommersonine. Magnetic Resonance in Chemistry 50: 627–631.CrossRefGoogle Scholar
  21. Kozukue, N., K.-S. Yoon, G.-I. Byun, S. Misoo, C.E. Levin, and M. Friedman. 2008. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. Journal of Agricultural and Food Chemistry 56: 11920–11928.CrossRefGoogle Scholar
  22. Krits, P., E. Fogelman, and I. Ginzberg. 2007. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227: 143–150.CrossRefGoogle Scholar
  23. Kumar, A., E. Fogelman, M. Weissberg, Z. Tanami, R.E. Veilleux, and I. Ginzberg. 2017. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta 246: 1189–1202.CrossRefGoogle Scholar
  24. Lelario, F., C. Labella, G. Napolitano, L. Scrano, and S.A. Bufo. 2016. Fragmentation study of major spirosolane-type glycoalkaloids by collision-induced dissociation linear ion trap and infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry 30: 2395–2406.CrossRefGoogle Scholar
  25. Li, H., 2013: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.Google Scholar
  26. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.CrossRefGoogle Scholar
  27. Manrique-Carpintero, N.C., J.G. Tokuhisa, I. Ginzberg, and R.E. Veilleux. 2014. Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theoritical and Applied Genetics 127: 391–405.CrossRefGoogle Scholar
  28. Marth, G.T., I. Korf, M.D. Yandell, R.T. Yeh, Z. Gu, H. Zakeri, N.O. Stitziel, L. Hillier, P.-Y. Kwok, and W.R. Gish. 1999. A general approach to single-nucleotide polymorphism discovery. Nature Genetics 23: 452–456.CrossRefGoogle Scholar
  29. McCue, K.F., P.V. Allen, L.V. Shepherd, A. Blake, J. Whitworth, M.M. Maccree, D.R. Rockhold, D. Stewart, H.V. Davies, and W.R. Belknap. 2006. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67: 1590–1597.CrossRefGoogle Scholar
  30. McCue, K.F., P.V. Allen, L.V. Shepherd, A. Blake, M.M. Maccree, D.R. Rockhold, R.G. Novy, D. Stewart, H.V. Davies, and W.R. Belknap. 2007. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68: 327–334.CrossRefGoogle Scholar
  31. Medina, T., E. Fogelman, E. Chani, A. Miller, I. Levin, D. Levy, and R. Veilleux. 2002. Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theoretical and Applied Genetics 105: 1010–1018.CrossRefGoogle Scholar
  32. Milner, S.E., N.P. Brunton, P.W. Jones, N.M.O. Brien, S.G. Collins, and A.R. Maguire. 2011. Bioactivities of glycoalkaloids and their aglycones from solanum species. Journal of Agricultural and Food Chemistry 59: 3454–3484.CrossRefGoogle Scholar
  33. Müller, M., and S. Munné-Bosch. 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology 169: 32–41.CrossRefGoogle Scholar
  34. Mweetwa, A.M., D. Hunter, R. Poe, K.C. Harich, I. Ginzberg, R.E. Veilleux, and J.G. Tokuhisa. 2012. Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 75: 32–40.CrossRefGoogle Scholar
  35. Nützmann, H.-W., A. Huang, and A. Osbourn. 2016. Plant metabolic clusters – From genetics to genomics. The New Phytologist 211: 771–789.CrossRefGoogle Scholar
  36. O'Brien, M., S.-C. Chantha, A. Rahier, and D.P. Matton. 2005. Lipid signaling in plants. Cloning and expression analysis of the Obtusifoliol 14α-demethylase from Solanum chacoense bitt., a pollination- and fertilization-induced gene with both Obtusifoliol and Lanosterol demethylase activity. Plant Physiology 139: 734–749.CrossRefGoogle Scholar
  37. Ohyama, K., A. Okawa, Y. Moriuchi, and Y. Fujimoto. 2013. Biosynthesis of steroidal alkaloids in Solanaceae plants: Involvement of an aldehyde intermediate during C-26 amination. Phytochemistry 89: 26–31.CrossRefGoogle Scholar
  38. Paudel, J.R., C. Davidson, J. Song, I. Maxim, A. Aharoni, and H.H. Tai. 2017. Pathogen and pest responses are altered due to RNAi-mediated knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. Molecular Plant-Microbe Interactions 30: 876–885.CrossRefGoogle Scholar
  39. Pelletier, Y., C. Clark, and G.C. Tai. 2001. Resistance of three wild tuber-bearing potatoes to the Colorado potato beetle. Entomologia Experimentalis et Applicata 100: 31–41.CrossRefGoogle Scholar
  40. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. De Bakker, and M.J. Daly. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559–575.CrossRefGoogle Scholar
  41. Ronning, C.M., J.R. Stommel, S.P. Kowalski, L.L. Sanford, R.S. Kobayashi, and O. Pineada. 1999. Identification of molecular markers associated with leptine production in a population of Solanum chacoense bitter. Theoretical and Applied Genetics 98: 39–46.CrossRefGoogle Scholar
  42. Sagredo, B., N. Balbyshev, A. Lafta, H. Casper, and J. Lorenzen. 2009. A QTL that confers resistance to Colorado potato beetle (Leptinotarsa decemlineata [say]) in tetraploid potato populations segregating for leptine. Theoretical and Applied Genetics 119: 1171–1181.CrossRefGoogle Scholar
  43. Sánchez-Maldonado, A.F., A. Schieber, and M.G. Gänzle. 2016. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects. Journal of Applied Microbiology 120: 955–965.CrossRefGoogle Scholar
  44. Sanford, L., K. Deahl, and S. Sinden. 1994. Glycoalkaloid content in foliage of hybrid and backcross populations from a Solanum tuberosum X S. chacoense cross. American Journal of Potato Research 71: 225–235.CrossRefGoogle Scholar
  45. Sawai, S., K. Ohyama, S. Yasumoto, H. Seki, T. Sakuma, T. Yamamoto, Y. Takebayashi, M. Kojima, H. Sakakibara, T. Aoki, T. Muranaka, K. Saito, and N. Umemoto. 2014. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell 26: 3763–3774.CrossRefGoogle Scholar
  46. Shakya, R., and D.A. Navarre. 2008. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). Journal of Agricultural and Food Chemistry 56: 6949–6958.CrossRefGoogle Scholar
  47. Sharma, S.K., D. Bolser, J. de Boer, M. Sønderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, G. de la Cruz, A. Di Genova, D.S. Douches, M. Eguiluz, X. Guo, F. Guzman, C.A. Hackett, J.P. Hamilton, G. Li, Y. Li, R. Lozano, A. Maass, D. Marshall, D. Martinez, K. McLean, N. Mejía, L. Milne, S. Munive, I. Nagy, O. Ponce, M. Ramirez, R. Simon, S.J. Thomson, Y. Torres, R. Waugh, Z. Zhang, S. Huang, R.G.F. Visser, C.W.B. Bachem, B. Sagredo, S.E. Feingold, G. Orjeda, R.E. Veilleux, M. Bonierbale, J.M.E. Jacobs, D. Milbourne, D.M.A. Martin, and G.J. Bryan. 2013. Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps. G3: Genes|Genomes|Genetics 3: 2031–2047.CrossRefGoogle Scholar
  48. Sinden, S.L., L.L. Sanford, W.W. Cantelo, and K.L. Deahl. 1986. Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense. Environmental Entomology 15: 1057–1062.CrossRefGoogle Scholar
  49. Song, S., H. Huang, H. Gao, J. Wang, D. Wu, X. Liu, S. Yang, Q. Zhai, C. Li, and T. Qi. 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. The Plant Cell 26: 263–279.CrossRefGoogle Scholar
  50. Sørensen, K.K., H.G. Kirk, K. Olsson, R. Labouriau, and J. Christiansen. 2008. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum× S. sparsipilum located on chromosome I. Theoretical and Applied Genetics 117: 1–9.CrossRefGoogle Scholar
  51. Tai, H.H., K. Worrall, Y. Pelletier, D. De Koeyer, and L.A. Calhoun. 2014. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. Journal of Agricultural and Food Chemistry 62: 9043–9055.CrossRefGoogle Scholar
  52. Tai, H.H., K. Worrall, D. De Koeyer, Y. Pelletier, G.C. Tai, and L. Calhoun. 2015. Colorado potato beetle resistance in Solanum oplocense X Solanum tuberosum intercross hybrids and metabolite markers for selection. American Journal of Potato Research 92: 684–696.CrossRefGoogle Scholar
  53. Thagun, C., S. Imanishi, T. Kudo, R. Nakabayashi, K. Ohyama, T. Mori, K. Kawamoto, Y. Nakamura, M. Katayama, S. Nonaka, C. Matsukura, K. Yano, H. Ezura, K. Saito, T. Hashimoto, and T. Shoji. 2016. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant and Cell Physiology 57: 961–975.CrossRefGoogle Scholar
  54. Umemoto, N., M. Nakayasu, K. Ohyama, M. Yotsu-Yamashita, M. Mizutani, H. Seki, K. Saito, and T. Muranaka. 2016. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiology 171: 2458–2467.Google Scholar
  55. Yencho, G.C., S.P. Kowalski, R.S. Kobayashi, S.L. Sinden, M.W. Bonierbale, and K.L. Deahl. 1998. QTL mapping of foliar glycoalkaloid aglycones in Solanum tuberosum X S. berthaultii potato progenies: Quantitative variation and plant secondary metabolism. Theoretical and Applied Genetics 97: 563–574.CrossRefGoogle Scholar
  56. Zhu, Z., F. An, Y. Feng, P. Li, L. Xue, A. Mu, Z. Jiang, J.-M. Kim, T.K. To, and W. Li. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences 108: 12539–12544.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Agriculture and Agri-Food CanadaFredericton Research and Development CentreFrederictonCanada
  2. 2.Agriculture and Agri-Food CanadaKentville Research and Development CentreKentvilleCanada

Personalised recommendations