Advertisement

American Journal of Potato Research

, Volume 96, Issue 5, pp 447–456 | Cite as

Ammonium Gluconate Production from Potato Starch Wastewater Using a Multi-Enzyme Process

  • Bingcui Chen
  • Kang Li
  • Lingtong Liao
  • Ruiming Wang
  • Piwu LiEmail author
Article
  • 100 Downloads

Abstract

In China, potato starch wastewater causes serious environmental pollution. Therefore, in this study, we aimed to develop a method for the transformation of potato starch in potato starch wastewater into ammonium gluconate, where potato starch wastewater was enzymatically hydrolyzed by liquefaction and saccharification. The optimum parameters of the hydrolysis process were as follows: α-amylase concentration, 0.5% (v/v); reaction time, 35 min; temperature, 90 °C; glucoamylase concentration, 0.7% (v/v); reaction time, 25 h; temperature, 50 °C; and pH, 4.0. Subsequently, ammonium gluconate was produced using 4.6 U/g glucose oxidase and 75 U/g catalase at 50 °C. The pH of the solution was maintained in the range of 6.8 ± 0.2. In the final crude ammonium gluconate-containing liquid, the protein, total nitrogen, total carbon, organic carbon, and ammonium salt content was 3.5 g/L, 8.47 g/L, 53.62 g/L, 13.79 g/ L, and 60 g/L, respectively. The environmental pollution was solved by using potato starch to produce value-added products.

Keywords

Environmental pollution Hydrolysis Liquefaction Potato starch Saccharification 

Abbreviations

DE

Dextrose equivalent

PSW

Potato starch wastewater

TSS

Total suspended solid

Resumen

En China, el agua residual del almidón de papa causa serios problemas de contaminación. De aquí que, en este estudio, nos propusimos desarrollar un método para la transformación del agua residual del almidón de la papa en gluconato de amonio, donde el agua fue hidrolizada enzimáticamente por licuefacción y sacarificación. Los parámetros óptimos del proceso de hidrólisis fueron los siguientes: concentración de α-amilasa, 0.5% (v/v); tiempo de reacción, 35 min; temperatura, 90 °C; concentración de glucoamilasa, 0.7% (v/v); tiempo de reacción, 25 h; temperatura, 50 °C; y pH, 4.0. Subsecuentemente, se produjo el gluconato de amonio usando 4.6 U/g de glucosa oxidasa y 75 U/g catalasa a 50 °C. El pH de la solución se mantuvo en el rango de 6.8 ± 0.2. En el líquido final crudo que contenía el gluconato de amonio, el contenido de la proteína, nitrógeno total, carbón total, carbón orgánico, y la sal de amonio fue de 3.5 g/L, 8.47 g/L, 53.62 g/L, 13.79 g/ L, y 60 g/L, respectivamente. Se resolvió la contaminación ambiental mediante el uso del almidón de la papa para producir productos con valor agregado.

Notes

Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2016CB04), Major Program of National Natural Science Foundation of Shandong (ZR2017ZB0208), National Science Foundation of China (31801527, C200201), Major Science and Technology Projects in Shandong Province (2016CYJS07A01).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12230_2019_9733_MOESM1_ESM.docx (440 kb)
ESM 1 (DOCX 440 kb)

References

  1. Abanoz, K., B.C. Stark, and M.Y. Akbas. 2012. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters in Applied Microbiology 55: 436–443.CrossRefGoogle Scholar
  2. Compton, S.J., and C.G. Jones. 1985. Mechanism of dye response and interference in the Bradford protein assay. Analytical Biochemistry 151: 369–374.CrossRefGoogle Scholar
  3. Ding, F., R. Wang, and B. Chen. 2019. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize ( Zea Mays L.) seedlings under NaCl stress. Plant Biology 21: 643–651.CrossRefGoogle Scholar
  4. Guo, J., Zhang Yuzhe, J. Zhao, Yu Zhang, X. Xiao, B. Wang, and B. Shu. 2015. Characterization of a bioflocculant from potato starch wastewater and its application in sludge dewatering. Applied Microbiology and Biotechnology 99: 5429–5437.CrossRefGoogle Scholar
  5. Han, X., G. Liu, Y. Pan, W. Song, and Y. Qu. 2018. Consolidated bioprocessing for sodium gluconate production from cellulose using Penicillium oxalicum. Bioresource Technology 251: 407–410.CrossRefGoogle Scholar
  6. Hashemi, M., S.H. Razavi, S.A. Shojaosadati, S.M. Mousavi, K. Khajeh, and M. Safari. 2010. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering 110: 333–337.CrossRefGoogle Scholar
  7. Huang, L.P., B. Jin, P. Lant, and J. Zhou. 2003. Biotechnological production of lactic acid integrated with potato wastewater treatment byRhizopus arrhizus. Journal of Chemical Technology & Biotechnology 78: 899–906.CrossRefGoogle Scholar
  8. Janeček, Š., B. Svensson, and E.A. MacGregor. 2014. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Sciences 71: 1149–1170.CrossRefGoogle Scholar
  9. Katsoyiannis, I.A., P. Gkotsis, M. Castellana, F. Cartechini, and A.I. Zouboulis. 2017. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent. Journal of Environmental Management 190: 132–139.CrossRefGoogle Scholar
  10. Khan, A.Y., S.B. Noronha, and R. Bandyopadhyaya. 2015. Impact of structural features of SBA-15 host particles on activity of immobilized glucose oxidase enzyme and sensitivity of a glucose sensor. Journal of Porous Materials 22: 369–378.CrossRefGoogle Scholar
  11. Kurcz, A., S. Błażejak, A.M. Kot, A. Bzducha-Wróbel, and M. Kieliszek. 2018. Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste and Biomass Valorization 9: 57–64.CrossRefGoogle Scholar
  12. Li, Q., Y. Wang, and Q. C. 2016. A novel enzymatic process for sodium gluconate production. Food Industryc 30: 161–164.Google Scholar
  13. Li, J., L. Zhang, X. Hou, P. Cheng, N. Chen, X. Yu, Q. Liu, and Y. Fan. 2018. Rapid determination of 129I in large-volume water samples using rotary evaporation preconcentration and accelerator mass spectrometry measurement. Journal of Radioanalytical and Nuclear Chemistry 318: 2355–2361.CrossRefGoogle Scholar
  14. Liang, S., and A.G. McDonald. 2015. Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Management 46: 197–200.CrossRefGoogle Scholar
  15. Linko, Y.-Y., and P. Javanainen. 1996. Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme and Microbial Technology 19: 118–123.CrossRefGoogle Scholar
  16. Luo, W., Z. Zhao, H. Pan, L. Zhao, C. Xu, and X. Yu. 2018. Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum. Energy 154: 240–248.CrossRefGoogle Scholar
  17. Mafra, A.C.O., F.F. Furlan, A.C. Badino, and P.W. Tardioli. 2015. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess and Biosystems Engineering 38: 671–680.CrossRefGoogle Scholar
  18. Manyuchi, M.M., C. Mbohwa, and E. Muzenda. 2018. Potential to use municipal waste bio char in wastewater treatment for nutrients recovery. Physics and Chemistry of the Earth, Parts A/B/C 107: 92–95.CrossRefGoogle Scholar
  19. Mishra, B. 2004. Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of Aspergillus foetidus and Aspergillus Niger. Bioresource Technology 94: 9–12.CrossRefGoogle Scholar
  20. Møller, M.S., M.S. Windahl, L. Sim, M. Bøjstrup, M. Abou Hachem, O. Hindsgaul, M. Palcic, B. Svensson, and A. Henriksen. 2015. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit Dextrinase. Journal of Molecular Biology 427: 1263–1277.CrossRefGoogle Scholar
  21. Muniraj, I.K., L. Xiao, Z. Hu, X. Zhan, and J. Shi. 2013. Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Research 47: 3477–3483.CrossRefGoogle Scholar
  22. Muniraj, I.K., L. Xiao, H. Liu, and X. Zhan. 2015. Utilisation of potato processing wastewater for microbial lipids and γ -linolenic acid production by oleaginous fungi: Microbial lipids and GLA production from potato processing wastewater. Journal of the Science of Food and Agriculture 95: 3084–3090.CrossRefGoogle Scholar
  23. Mutturi, S., and G. Lidén. 2013. Effect of temperature on simultaneous Saccharification and fermentation of pretreated spruce and Arundo. Industrial & Engineering Chemistry Research 52: 1244–1251.CrossRefGoogle Scholar
  24. Pu, S., H. Ma, D. Deng, S. Xue, R. Zhu, Y. Zhou, and X. Xiong. 2018. Isolation, identification, and characterization of an Aspergillus Niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PLoS ONE 13: e0190236.CrossRefGoogle Scholar
  25. Shao, Q., Chundawat, S.P., Krishnan, C., Bals, B., Thelen, K.D., Dale, B.E., Balan, V., 2010. REenseazrcyhmatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant 3: 12.Google Scholar
  26. Shazia, K., K. Tehzeeb, H. Uzma, U. Mobina, Z.Q. Muhammad, B. Tabbasum, sajid Amina, I. Saiqa, and ismayil Tariq. 2013. Application of glucose oxidase for the production of metal gluconates by fermentation. African Journal of Biotechnology 12: 6766–6775.CrossRefGoogle Scholar
  27. Vera, L., W. Sun, M. Iftikhar, and J. Liu. 2015. LCA based comparative study of a microbial oil production starch wastewater treatment plant and its improvements with the combination of CHP system in Shandong, China. Resources, Conservation and Recycling 96: 1–10.CrossRefGoogle Scholar
  28. Verma, M., S.K. Brar, R.D. Tyagi, R.Y. Surampalli, and J.R. Valéro. 2007. Starch industry wastewater as a substrate for antagonist, Trichoderma viride production. Bioresource Technology 98: 2154–2162.CrossRefGoogle Scholar
  29. Wan, C.F., S. Jin, and T.-S. Chung. 2019. Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed. Journal of Membrane Science 572: 658–667.CrossRefGoogle Scholar
  30. Wang, R.-M., Y. Wang, G.-P. Ma, Y.-F. He, and Y.-Q. Zhao. 2009. Efficiency of porous burnt-coke carrier on treatment of potato starch wastewater with an anaerobic–aerobic bioreactor. Chemical Engineering Journal 148: 35–40.CrossRefGoogle Scholar
  31. Xie, L., N. Dong, L. Wang, and Q. Zhou. 2014. Thermophilic hydrogen production from starch wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic effluent recycling. International Journal of Hydrogen Energy 39: 20942–20949.CrossRefGoogle Scholar
  32. Xu, Z., Y. Han, and H. Zhang. 2003. Effect factors of liquidation of potato starch. Chemistry and Adhesion 7: 20–22.Google Scholar
  33. Xue, F., B. Gao, Y. Zhu, X. Zhang, W. Feng, and T. Tan. 2010. Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresource Technology 101: 6092–6095.CrossRefGoogle Scholar
  34. Zhao, X., M. Andersson, and R. Andersson. 2018. Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry 251: 58–63.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Bio-based material & Green Papermaking, School of BioengineeringQilu University of Technology (Shandong Academy of Sciences)JinanRepublic of China

Personalised recommendations