The Weed Link in Zebra Chip Epidemiology: Suitability of Non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter Solanacearum”

  • W. Rodney CooperEmail author
  • David R. Horton
  • Eugene Miliczky
  • Carrie H. Wohleb
  • Timothy D. Waters


Potato psyllid (Bactericera cockerelli) is a vector of “Candidatus Liberibacter solanacearum”, the pathogen associated with potato zebra chip disease. While the psyllid apparently colonizes potato from non-crop Solanaceae or Convolvulaceae, the identity of these weed sources is uncertain. We examined susceptibility of ten non-crop species (one Convolvulaceae and nine Solanaceae) to potato psyllid and Liberibacter, with an emphasis on psyllid populations (northwestern and western haplotypes) and plant species that are present in the Pacific Northwest. Psyllids of the western haplotype survived and developed on all plant species, while psyllids of the northwestern haplotype survived on all species except Solanum physalipholium. All species except Lycium barbarum and Convolvulus arvensis were susceptible to Liberibacter. Results of our study provide the most extensive examination of plant suitability to potato psyllid and Liberibacter and will lead to improved capabilities of predicting which potato fields are at risk to arrival of infective psyllids.


Potato psyllid Nightshade Matrimony vine Ground cherry Coyote tobacco 


El psílido de la papa (Bactericera cockerelli) es un vector de “Candidatus Liberibacter solanacearum”, el patógeno asociado con la enfermedad de la papa rayada (zebra chip). Mientras que el psílido aparentemente coloniza la papa desde especies no cultivadas de Solanáceae o Convolvulaceae, es incierta la identidad de estas fuentes de malezas. Examinamos la susceptibilidad de diez especies no cultivadas (una Convolvulaceae y nueve Solanaceae) al psílido de la papa y a Liberibacter, con énfasis en las poblaciones del psílido (haplotipos noroccidentales y occidentales) y especies de plantas presentes en el Pacífico Noroccidental. Los psílidos del haplotipo del occidente sobrevivieron y se desarrollaron en todas las especies vegetales, mientras que los del haplotipo del noroccidente sobrevivieron en todas las especies excepto en Solanum physalipholium. Todas las especies, excepto Lycium barbarum y Convolvulus arvensis, fueron susceptibles a Liberibcter. Los resultados de nuestro estudio proporcionan el examen más extensivo de la susceptibilidad de las plantas al psílido de la papa y a Liberibacter y conducirá hacia capacidades mejoradas en la predicción de qué campos de papa estan en riesgo del arribo de psílidos infectivos.



Pauline Anderson, Deb Broers, Steven Hildreth, and Sally Longoria provided technical support for psyllids and Liberibacter assays. Funding was provided by the Washington State Department of Agricultural Specialty Crop Block Grant project #K1761 and from the USDA-NIFA-SCRI Project #2015-51181-24292. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.


  1. Borges, K.M., W.R. Cooper, S.F. Garczynski, J. Thinakaran, A.S. Jensen, D.R. Horton, J.E. Munyaneza, I. Cueva, and N.M. Barcenas. 2017. “Candidatus Liberibacter solanacearum” associated with the psyllid, Bactericera maculipennis (Hemiptera: Triozidae). Environmental Entomology 46: 210–216.Google Scholar
  2. Cooper, W.R., P.E. Alcala, and N.M. Barcenas. 2015a. Relationship between plant vascular architecture and within-plant distribution of 'Candidatus Liberibacter solanacearum' in potato. American Journal of Potato Research 92: 91–99.CrossRefGoogle Scholar
  3. Cooper, W.R., K.D. Swisher, S.F. Garczynski, T. Mustafa, J.E. Munyaneza, and D.R. Horton. 2015b. Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Annals of the Entomological Society of America 108: 137–145.CrossRefGoogle Scholar
  4. Crawford, D. L. 1914. A monograph of the jumping plant-lice or Psyllidae of the new world. U.S. Natural History Museum Bulletin 85, 186 pp.Google Scholar
  5. Cronquist, A., A. H. Holmgren, N. H. Holmgren, J. L. Reveal, P. K. Holmgren. 1984. Intermountain flora: Vascular plants of the intermountain west, U.S.A., Volume 4. New York Botanical Garden, Bronx, NY.Google Scholar
  6. Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011a. Detection of ‘Candidatus Liberibacter solanacearum’ in potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.CrossRefGoogle Scholar
  7. Crosslin, J.M., J.A. Goolsby, and J.E. Munyaneza. 2011b. Liberibacter testing of 2011 psyllids and research update. In Proc. 11th Ann. Zebra Chip rep. Ses Nov. 6–9, 2011, ed. F. Workneh, A. Rashed, and C.M. Rush, 17–21. San Antonio: TX.Google Scholar
  8. Crosslin, J.M., P.B. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington state. Plant Disease 96: 452.CrossRefGoogle Scholar
  9. Edmunson, W.C., L.A. Schaal, and B.J. Landis. 1951. Potato growing in the western states. USDA Farmer's Bulletin No. 2034.Google Scholar
  10. Essig, E.O. 1917. The tomato and laurel psyllids. Journal of Economic Entomology 10: 433–444.CrossRefGoogle Scholar
  11. Galaviz, R., V. Hernandez, A. Sanchez, M. Barrera, G. Frias, and F. Durazo. 2011. Highlights of zebra chip: Mexican experiences. In Proceedings of the 10th annual Zebra Chip reporting session, November 2010, ed. F. Workneh and C.M. Rush, 42–46. TX: Dallas.Google Scholar
  12. Goolsby, J.A., J.J. Adamczyk, J.M. Crosslin, N.N. Troxclair, J.R. Anciso, G.G. Bester, J.D. Bradshaw, E.D. Bynum, L.A. Carpio, D.C. Henne, A. Joshi, J.E. Munyaneza, P. Porter, P.E. Sloderbeck, J.R. Supak, C.M. Rush, F.J. Willett, B.J. Zechmann, and B.A. Zens. 2012. Seasonal population dynamics of the potato psyllid (Hemiptera: Triozidae) and its associated pathogen “Candidatus Liberibacter solanacearum” in potatoes in the southern great plains of North America. Journal of Economic Entomology 105: 1268–1276.CrossRefGoogle Scholar
  13. Hansen, A.L., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.CrossRefGoogle Scholar
  14. Henne, D.C., L. Paetzold, F. Workneh, and C.M. Rush. 2011. Evaluation of potato psyllid cold tolerance, overwintering survival, sticky trap sampling, and effects of Liberibacter on potato psyllid alternate host plants. In Proceedings of the 10th annual Zebra Chip reporting session, November 2010, ed. F. Workneh and C.M. Rush, 149–153. TX: Dallas.Google Scholar
  15. Horton, D.R., W.R. Cooper, J.E. Munyaneza, K.D. Swisher, E.R. Echegaray, A.F. Murphy, S.I. Rondon, C.H. Wohleb, T.D. Waters, and A.S. Jensen. 2015a. A new problem and old questions: Potato psyllid in the Pacific northwest. American Entomologist 61: 234–244.CrossRefGoogle Scholar
  16. Horton, D., W.R. Cooper, J. Munyaneza, K. Swisher, J. Thinakaran, C. Wohleb, T. Waters, and A. Jensen. 2015b. Non-potato host plants of potato psyllid in the Pacific northwest: A year-round complication? Potato Progress XV (2): 1–6.Google Scholar
  17. Horton, D.R., J. Thinakaran, W.R. Cooper, J.E. Munyaneza, C.H. Wohleb, T.D. Waters, W.E. Snyder, Z. Fu, D.W. Crowder, and A.S. Jensen. 2016. Matrimony vine and potato psyllid in the Pacific northwest: A worrisome marriage? Potato Progress XVI (14): 1–12.Google Scholar
  18. Horton, D.R., E. Miliczky, T.M. Lewis, W.R. Cooper, J.E. Munyaneza, T. Mustafa, J. Thinakaran, T.D. Waters, C.H. Wohleb, and A.S. Jensen. 2017. New geographic records for the nearctic psyllid Bactericera maculipennis (Crawford) with biological notes and descriptions of the egg and fifth-instar nymph (Hemiptera: Psylloidea: Triozidae). Proceedings of the Entomological Society of Washington 119: 191–214.CrossRefGoogle Scholar
  19. Kaur, N., W.R. Cooper, J.M. Duringer, I.E. Badillo-Vargas, G. Esparza-Diaz, A. Rashed, and D.R. Horton. 2018. Survival and development of potato psyllid (Hemiptera: Triozidae) on Convolvulaceae: Effects of a plant-fungus symbiosis (Periglandula). PLoS One in press 13: e0201506.CrossRefGoogle Scholar
  20. Knowlton, G.F., and W.L. Thomas. 1934. Host plants of the potato psyllid. Journal of Economic Entomology 27: 547.CrossRefGoogle Scholar
  21. Liefting, L.W., P.W. Sutherland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009. A new ‘Candidatus Liberibacter’ species associated with diseases of Solanaceous crops. Plant Disease 93: 208–214.CrossRefGoogle Scholar
  22. Liu, D., and J.T. Trumble. 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata 123: 35–42.CrossRefGoogle Scholar
  23. Liu, D., J.T. Trumble, and R. Stouthamer. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata 118: 117–183.CrossRefGoogle Scholar
  24. Munyaneza, J.E. 2012. Zebra chip disease of potato: Biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.CrossRefGoogle Scholar
  25. Munyaneza, J.E., T.W. Fisher, V.G. Sengoda, S.F. Garczynski, A. Nissinen, and A. Lemmetty. 2010. First report of "Candidatus Liberibacter solanacearum" associated with psyllid-affected carrots in Europe. Plant Disease 94: 639.CrossRefGoogle Scholar
  26. Munyaneza, J.E., V.G. Sengoda, E. Aguilar, B. Bextine, and K.F. McCue. 2013. First report of “Candidatus Liberibacter solanacearum” on eggplant in Honduras. Plant Disease 97: 1654.CrossRefGoogle Scholar
  27. Murphy, A.F., S.I. Rondon, and A.S. Jensen. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific northwest. American Journal of Potato Research 90: 294–296.CrossRefGoogle Scholar
  28. Murphy, A.F., R.A. Cating, A. Goyer, P.B. Hamm, and S.I. Rondon. 2014. First report of natural infection by 'Candidatus Liberibacter solanacearum' in bittersweet nightshade (Solanum dulcamara) in the Columbia basin of eastern Oregon. Plant Disease 98: 1425.CrossRefGoogle Scholar
  29. Mustafa, T., D.R. Horton, W.R. Cooper, K.D. Swisher, R.S. Zack, H.R. Pappu, and J.E. Munyaneza. 2015a. Use of electrical penetration graph technology to examine transmission of 'Candidatus Liberibacter solanacearum' to potato by three haplotypes of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae). PLoS One 10: e0138946.CrossRefGoogle Scholar
  30. Mustafa, T., D.R. Horton, W.R. Cooper, K.D. Swisher, R.S. Zack, and J.E. Munyaneza. 2015b. Interhaplotype fertility and effects of host plant on reproductive traits of three haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Environmental Entomology 44: 300–308.CrossRefGoogle Scholar
  31. Mustafa, T., D.R. Horton, K.D. Swisher, R.S. Zack, and J.E. Munyaneza. 2015c. Effects of host plant on development and body size of three haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Environmental Entomology. 44: 593–600.CrossRefGoogle Scholar
  32. Pletsch, D. J. 1947. The potato psyllid Paratrioza cockerelli (Sulc): Its biology and control. Montana Agricultural Experimental Station Bulletin 446, 95pp.Google Scholar
  33. Sengoda, V.G., J.L. Buchman, D.C. Henne, H.R. Pappu, and J.E. Munyaneza. 2013. “Candidatus Liberibacter solanacearum” titer over time in Bactericera cockerelli (Hemiptera: Triozidae) after acquisition from infected potato and tomato plants. Journal of Economic Entomology 106: 1964–1972.CrossRefGoogle Scholar
  34. Strausbaugh, P. D., and E. L. Core. 1977. Flora of West Virginia, 2nd edition. Seneca Books, Morgantown, WV.Google Scholar
  35. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.CrossRefGoogle Scholar
  36. Swisher, K.D., V.G. Sengoda, J. Dixon, E. Echegaray, A.F. Murphy, S.I. Rondon, J.E. Munyaneza, and J.M. Crosslin. 2013. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific northwestern United States. American Journal of Potato Research 90: 570–577.CrossRefGoogle Scholar
  37. Swisher, K.D., D.C. Henne, and J.M. Crosslin. 2014a. Identification of a fourth haplotype of Bactericera cockerelli (Hemiptera: Triozidae) in the United States. Journal of Insect Science 14: 161.CrossRefGoogle Scholar
  38. Swisher, K.D., V.G. Sengoda, J. Dixon, J.E. Munyaneza, A.F. Murphy, S.I. Rondon, B. Thompson, A.V. Karasev, E.J. Wenninger, N. Olsen, and J.M. Crosslin. 2014b. Assessing potato psyllid haplotypes in potato crops in the Pacific northwestern United States. American Journal of Potato Research 91: 485–491.CrossRefGoogle Scholar
  39. Teresani, G.R., E. Bertolini, A. Alfar-Fernandez, C. Martinez, F.A.O. Tanaka, E.W. Kitajima, M. Rosello, S. Sanjuan, J.C. Ferrandiz, M.M. Lopez, M. Cambra, and M.I. Font. 2014. Association of 'Candidatus Liberibacter solanacearum' with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104: 804–811.CrossRefGoogle Scholar
  40. Thinakaran, J., E. Pierson, M. Kunta, J.E. Munyaneza, C.M. Rush, and D.C. Henne. 2015. Silverleaf nightshade (Solanum elaeagnifolium), a reservoir host for 'Candidatus Liberibacter solanacearum', the putative causal agent of zebra chip disease of potato. Plant Disease 99: 910–915.CrossRefGoogle Scholar
  41. Thinakaran, J., D.R. Horton, W.R. Cooper, A.S. Jensen, C.H. Wohleb, J. Dahan, T. Mustafa, A.V. Karasev, and J.E. Munyaneza. 2017. Association of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. American Journal of Potato Research 94: 490–499.CrossRefGoogle Scholar
  42. Torres, G.L., W.R. Cooper, D.R. Horton, K.D. Swisher, S.F. Garczynski, J.E. Munyaneza, and N.M. Barcenas. 2015. Horizontal transmission of "Candidatus Liberibacter solanacearum" by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLoS One 10: e0142734. Scholar
  43. Vereijssen, J., N.M. Taylor, A.M. Barnes, S.E. Thompson, D.P. Logan, R.C. Butler, A.L. Yen, and K.J. Finlay. 2015. First report of 'Candidatus Liberibacter solanacearum' in Jerusalem cherry (Solanum pseudocapsicum) and thorn-apple (Datura stramonium) in New Zealand. New Disease Reports 32.
  44. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. US Department of Agriculture, Technical Bulletin No. 1107.Google Scholar
  45. Wen, A., I. Mallik, V.Y. Alvarado, J.S. Pasche, X. Wang, L. Levy, H. Lin, H.B. Scholthof, T.E. Mirkov, C.M. Rush, and N.C. Gudmestad. 2009. Detection, distribution, and genetic variability of 'Candidatus Liberibacter' species associated with zebra complex disease of potato in North America. Plant Disease 93: 1102–1115.CrossRefGoogle Scholar
  46. Whitson, T. D., L. C. Burrill, S. A. Dewey, D. W. Cudney, B. E. Nelson, R. D. Lee, and R. Parker. 2009. Weeds of the west, 10th edition. Color World Press, Jackson, WY.Google Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.USDA-ARS-Yakima Agricultural Research LaboratoryWapatoUSA
  2. 2.Washington State UniversityMoses LakeUSA
  3. 3.Washington State UniversityPascoUSA

Personalised recommendations