Advertisement

American Journal of Potato Research

, Volume 96, Issue 1, pp 48–54 | Cite as

Possibility of Recommending Potassium Application Rates Based on a Rapid Detection of the Potato Petiole K Status with a Portable K ion Meter

  • Xiaohua Shi
  • Xin Zhang
  • Wenqin Kang
  • Yang Chen
  • Mingshou FanEmail author
Article
  • 50 Downloads

Abstract

Because of the variations in the K amount required to produce 1 t potatoes and the poor relationship between soil potassium content and potato yield, recommended K-fertilizer rates based on soil tests are unreliable for potato production. This research was set to test the possibility of establishing a potato plant K diagnosis method with a portable K ion meter. The results confirmed the luxury absorption of K by potato. Moreover, the potato petiole K content by a portable K ion meter was linearly related to the vine and tuber K contents as well as the plant accumulated K level. Therefore the petiole K concentration is a good indicator of plant K status. Furthermore, the relationship between the relative potato yield and the petiole K content fits a quadratic equation, thus the threshold petiole K content could be calculated based on the minimum petiole K content at the highest relative yield.

Resumen

Debido a las variaciones en la cantidad de K requerida para producir 1 t de papas, y la pobre relación entre el contenido de potasio en el suelo y el rendimiento de papa, los niveles de fertilizantes de K recomendados con base a las pruebas del suelo, no son confiables para la producción de papa. Esta investigación se estableció para probar la posibilidad de establecer un método de diagnóstico de K en la planta de papa con un iónmetro de K portátil. Los resultados confirmaron la absorción de lujo de K por la papa. Aún más, el contenido de K en el pecíolo de la papa por el iónmetro de K portátil estuvo relacionado linealmente a los contenidos de K del follaje y del tubérculo, así como al nivel de K acumulado en la planta. De aquí que la concentración de K en el pecíolo es un buen indicador de la situación del K en la planta. Más aún, la relación entre el rendimiento relativo de la papa y el contenido de K en el pecíolo se ajusta a una ecuación cuadrática, entonces el umbral del contenido de K en el pecíolo pudiera calcularse con base en el contenido mínimo de K en el pecíolo en el rendimiento relativo más alto.

Keywords

Plant K diagnosis Relative tuber yield Split application of K 

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (31760356) and the Innovation Team of Universities in Inner Mongolia of China (NMGIRT—A1602).

References

  1. AbdelGadir, A.H., M.A. Errebhil, H.M. Al-Sarhan, and M. Ibrahim. 2003. The effect of different levels of additional potassium on yield and industrial qualities of potato in an irrigated arid region. Am J Potato Res 80: 219–222.CrossRefGoogle Scholar
  2. Allison, M.F., J.H. Fowler, and E.J. Allen. 2001. Response of potato to potassium fertilizers. J. Agric Sci 136: 407–426.Google Scholar
  3. Al-Moshileh, A.M., M.A. Errebhi, and M.I. Motawei. 2005. Effect of various potassium and nitrogen rates and splitting methods on potato under sandy soil and arid environmental conditions. Emir J Food Agric 17 (1): 1–9.CrossRefGoogle Scholar
  4. Annadurai, K., S.P. Palaniappan, P. Masilamani, and R. Kavimani. 2000. Split application of potassium on rice - a review. Agric Rev 21 (1): 36–44.Google Scholar
  5. Gao, Y., Y. Wei, and M. Fan. 2011. Nutrient requirements of potato. Chinese Potato Journal 25: 182–187.Google Scholar
  6. Gong, Q., and M. Fan. 2011. Formula fertilization by soil testing for potato, 47–48. Beijing: Chinese Agriculture Press.Google Scholar
  7. Jiang, Y. 2009. Effects of N,P,K on yield of potatoes. Agricultural Technology Service 26: 56–57.Google Scholar
  8. Kang, W., M. Fan, Z. Ma, X. Shi, and H. Zheng. 2014. Luxury absorption of potassium by potato plants. Am JPotato Res 91 (5): 573–578.CrossRefGoogle Scholar
  9. Karam, F., Y. Rouphael, and R. Lahoud. 2009. Influence of genotypes and potassium application rates on yield and potassium use efficiency of potato. J Agron 8 (1): 27–32.CrossRefGoogle Scholar
  10. Karam, F., R. Massaad, S. Skaf, J. Breidy, and Y. Rouphael. 2011. Potato response to potassium application rates and timing under semi-arid conditions. Adv Hortic Sci 25 (4): 265–268.Google Scholar
  11. Kolar, J.S., and H.S. Grewal. 1994. Effect of split application of potassium on growth, yield and potassium accumulation by soybean. Fertilizer Research 39 (3): 217–222.CrossRefGoogle Scholar
  12. Kumar, P., S.K. Pandey, and B.P. Singh. 2007. Influence of source and time of potassium application on potato growth, yield, economics and crisp quality. Potato Res 50: 1–13.CrossRefGoogle Scholar
  13. Li, H., R. Bi, and F. Chen. 2006. Effect of K, Zn and Mn combined application on yield and qualities of potato. Soil and Fertilizer Sciences in China 4: 45–50.Google Scholar
  14. Malakouti M.J. 1993. Response of potato to potassium in the calcareous soils of Iran: In K Availability of Soils in West Asia and North Africa, Status and Perspectives, 251–260. Iran: Regional Symposium.Google Scholar
  15. McNabnay, M., B.B. Dean, R.W. Bajema, and G.M. Hyde. 1999. The effect of potassium deficiency on chemical, biochemical and physical factors commonly associated with blackspot development in potato tubers. Am J Potato Res 76: 53–60.CrossRefGoogle Scholar
  16. Panique, E., K.A. Kelling, and E.E. Schulte. 1997. Potassium rate and source effects on potato yield, quality, and disease interaction. Am Potato J 74: 379–398.CrossRefGoogle Scholar
  17. Perrenoud, S. 1993. Fertilizing for high yield potato. IPI Bulletin 8. 2nd ed. Basel: International Potash Institute.Google Scholar
  18. Roberto, D.A.R., and P.H. Monnerat. 2000. Nutrient concentration in potato stem, petiole and leaflet in response to potassium fertilizer. Sci Agi 57 (2): 251–255.Google Scholar
  19. Rosen, C., W. Wang, and D. Birong. 1996. Potassium fertilizer effects of potato yield and petiole sap potassium concentrations. Hortscience 31 (4): 592–593.Google Scholar
  20. Trehan, S.P., and N. Claassen. 1998. External K requirement of young plants of potato, sugar beet and wheat in flowing solution culture resulting from different internal requirements and uptake efficiency. Potato Res 41: 229–237.CrossRefGoogle Scholar
  21. Walworth, J.L., and J.E. Muniz. 1993. A compendium of tissue nutrient concentrations for field grown potatoes. Am Potato J 70: 579–397.CrossRefGoogle Scholar
  22. Westermann, D.T., and T.A. Tindall. 2000. Potassium diagnostic criteria for potato plants. Better Crop 84: 6–8.Google Scholar
  23. Wulff, F., V. Schulz, A. Jungk, and N. Claassen. 1998. Potassium fertilization on sandy soils in relation to soil test, crop yield and K-leaching. J Plant Nutr Soil Sci 161 (5): 591–599.Google Scholar
  24. Xia, G., and Z. Guo. 2008. Effect of yield increasing and quality promoting of high starch potato by increasing of potassium fertilizer applying in different growth stages. Journal of Fujian Agriculture and Forestry University 37: 449–452.Google Scholar
  25. Yan, X., H. Xiao, and W. Cao. 2005. Effects of potassium fertilizer on potato. Guizhou Agricultural Sciences 33: 55–56.Google Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Xiaohua Shi
    • 1
    • 2
  • Xin Zhang
    • 1
  • Wenqin Kang
    • 1
  • Yang Chen
    • 3
  • Mingshou Fan
    • 1
    Email author
  1. 1.College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
  2. 2.Inner Mongolia Seed Potato Propagation CenterHohhotChina
  3. 3.College of Grassland, Resource and EnvironmentInner Mongolia Agricultural UniversityHohhotChina

Personalised recommendations