American Journal of Potato Research

, Volume 96, Issue 1, pp 6–12 | Cite as

Intumescence Injury in the Leaves of Russet Burbank Potato Plants is Mitigated by Calcium Nutrition

  • Justin E. Schabow
  • Jiwan P. PaltaEmail author


Many plants including potato, tobacco, tomato, and geraniums often develop intumescence (oedema) injury, which is observed exclusively on plants grown in controlled environments. Early studies have suggested a link between light quality and intumescence by showing UV and/or far-red light mitigation of injury. Here, we report that intumescence can be mitigated by calcium nutrition. Commercial cultivars of Solanum tuberosum L. cvs ‘Russet Burbank’ and ‘Atlantic’ were grown from in vitro shoot cultures in 20.4 L pots within a climate-controlled greenhouse. Plants were irrigated daily to excess with Peter’s Professional Peat Lite Special 20–10-20 fertilizer (0.52 g·L−1 tap water) supplemented with either 1 mM or 10 mM CaCl2·2H2O. We evaluated 13 replications from both potato cultivars and Ca2+ treatments. Intumescences were observed at about 32 days after calcium treatments began, exclusively on the upper and lower leaf surfaces of Russet Burbank. Upper canopy leaves of Russet Burbank showed approximately 65 and 5% intumescence injury for the 1 mM and 10 mM Ca2+ treatments, respectively. Average leaf calcium concentration was nearly double in the plants supplemented with 10 mM compared with 1 mM Ca2+. Tuber yield and foliage weight were higher in the plants supplemented with 10 mM Ca2+ as compared with 1 mM Ca2+ and suggests that intumescence injury reduced growth and partitioning. These data provide evidence that supplemental calcium can mitigate intumescence injury on susceptible cultivars of potato in controlled environments.


Solanum tuberosum Calcium deficiency  Controlled environment Greenhouse Oedema injury Tuber yield Foliage growth 


Muchas plantas, incluyendo papa, tabaco, tomate y geranios, a menudo desarrollan daños por intumescencias (oedemas), que se observan exclusivamente en plantas que se cultivan en ambientes controlados. Estudios previos han sugerido un nexo entre calidad de la luz e intumescencia, mostrando mitigación del daño por UV y/o por rojo lejano. Aquí reportamos que se puede mitigar la intumescencia mediante nutrición con calcio. Las variedades comerciales de Solanum tuberosum L. “Russet Burbank” y “Atlantic” crecieron desde cultivo de ápices in vitro en recipientes de 2.4 L en un invernadero con clima controlado. Se regaron las plantas a diario a exceso con el fertilizante especial Peter’s Professional Peat Lite Special 20–10-20″ (0.52 g-L-1 agua de la llave) suplementada con 1 mM o 10 mM CaCl2·2H2O. Evaluamos 13 repeticiones tanto de las variedades de papa como de los tratamientos con Ca+. Se observaron las intumescencias cerca de los 32 días después de que iniciaron los tratamientos, exclusivamente en las superficies foliares superiores e inferiores de Russet Burbank. Las hojas de la parte superior del follaje de esta variedad mostraron aproximadamente 65% y 5% de daño por intumescencia con los tratamientos de 1 mM y 10 mM de Ca+, respectivamente. La concentración promedio de calcio en la hoja fue cercano al doble en las plantas suplementadas con 10 mM en comparación con las de 1 mM de Ca2+. El rendimiento de tubérculo y el peso del follaje fueron más altos en las plantas suplementadas con 10 mM de Ca2+ al compararlas con 1 mM Ca2+ y sugiere que el daño de intumescencia redujo el crecimiento y la redistribución. Estos datos suministran evidencia de que el calcio suplementario puede mitigar el daño de la intumescencia en las variedades susceptibles de papa en ambientes controlados.



This paper is a portion of a thesis submitted by Justin Schabow in partial fulfillment of M.S. degree requirements. This research was supported by the College of Agricuture and Life Sciences, University of Wisconsin, Madison, USA.


  1. Aburjai, T., S. Bernasconi, L. Manzocchi, and F. Pelizzoni. 1996. Isolation of 7-dehydrocholesterol from cell cultures of Solanum malacoxylon. Phytochemistry 43: 773–776.CrossRefGoogle Scholar
  2. Aburjai, T., S. Al-Khalil, and M. Abuirjeie. 1998. Vitamin D3 and its metabolites in tomato, potato, eggplant and zucchini leaves. Phytochemistry 49: 2497–2499.CrossRefGoogle Scholar
  3. Atkinson, G.F. 1893. Oedema of the tomato. Cornell University Agricultural Experiment Station Bulletin No. 53. Ithaca: Cornell University.Google Scholar
  4. Balge, R.J., B.E. Struckmeyer, and G.E. Beck. 1969. Occurence, severity and nature of oedema in Pelargonium hortorum Ait. Journal of the American Society Horticultural Science 94: 181–183.Google Scholar
  5. Bangerth, F. 1979. Calcium-related physiological disorders of plants. Annual Review of Phytopathology 17: 97–122.CrossRefGoogle Scholar
  6. Barta, D.J., and T.W. Tibbitts. 2000. Calcium localization and tipburn development in lettuce leaves during early enlargement. Journal of the American Society Horticultural Science 125 (3): 294–298.Google Scholar
  7. Bayer, M.H. 1982. Genetic tumors: Physiological aspects of tumor formation in interspecies hybrids [Nicotiana]. In Molecular biology of plant tumors, ed. G. Kahl and J.S. Schnell, 33–67. New York: Academic Press.CrossRefGoogle Scholar
  8. Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: A new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323.CrossRefGoogle Scholar
  9. Busse, J.S., S. Ozgen, and J.P. Palta. 2008. Influence of root zone calcium on subapical necrosis in potato shoot cultures: Localization of injury at the tissue and cellular levels. Journal of the American Society Horticultural Science 133 (5): 653–662.Google Scholar
  10. Clarkson, D.T. 1984. Calcium transport between tissues and its distribution in the plant. Plant, Cell and Environment 7: 449–456.CrossRefGoogle Scholar
  11. Clough, G.H. 1994. Potato tuber yield, mineral concentration, and quality after calcium fertilization. Journal of the American Society Horticultural Science 119 (2): 175–179.Google Scholar
  12. Collier, G.F., and T.W. Tibbitts. 1982. Tipburn of lettuce. Horticultural Reviews 4: 49–65.Google Scholar
  13. Conway, W.S., C.E. Sams, and A. Kelman. 1994. Enhancing the natural resistance of plant tissues to postharvest diseases through calcium applications. HortScience 29 (7): 751–754.Google Scholar
  14. Dale, E. 1901. Investigation on abnormal outgrowths or intumescences on Hibiscus vitifolius L. Philosophical Transactions of the Royal Society of London. Series B 194: 163–182.CrossRefGoogle Scholar
  15. Douglas, G.E. 1907. The formation of intumescences on potato plants. Botanical Gazette 43 (4): 233–250.CrossRefGoogle Scholar
  16. Eguchi, T., R. Hernández, and C. Kubota. 2016. Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. HortScience 51 (6): 712–719.Google Scholar
  17. Eisa, H.M., and A.K. Dobrenz. 1971. Morphological and anatomical aspects of oedema in eggplants (Solanum melongena L.). Journal of the American Society Horticultural Science 96: 766–769.Google Scholar
  18. Habib, A., and D.J. Donnelly. 2005. Stimulation of Ca2+ uptake into micropropagated potato plantlets by UV light and vitamin D3. American Journal of Potato Research 82: 191–196.CrossRefGoogle Scholar
  19. Hahn, G.G., C. Hartley, and A. Rhoads. 1920. Hypertrophied lenticels on the roots of conifers and their relation to moisture and aeration. Journal of Agricultural Research 20: 253–266.Google Scholar
  20. Jones, J.V., and J. Burgess. 1977. Physiological studies on a genetic tumor of Pisum sativum L. Annals of Botany 41 (1): 219–225.CrossRefGoogle Scholar
  21. Karlsson, B.H., P.M. Crump, and J.P. Palta. 2006. Enhancing tuber calcium concentration may reduce incidence of blackspot bruise injury in potatoes. HortScience 41 (5): 1213–1221.Google Scholar
  22. Klein, R.M. 1978. Plants and near ultra-violet radiation. The Botanical Review 40: 1–127.CrossRefGoogle Scholar
  23. Kratzke, M.G., and J.P. Palta. 1986. Calcium accumulation in potato tubers: Role of the basal roots. HortScience 21 (4): 1022–1024.Google Scholar
  24. La Rue, C.D. 1936. Intumescences on poplar leaves. III. The role of plant growth hormones in their production. American Journal of Botany 23 (8): 520–524.CrossRefGoogle Scholar
  25. Lang, S.P., and T.W. Tibbitts. 1983. Factors controlling intumescence development on tomato plants. Journal of the American Society for Horticultural Science 108: 93–98.Google Scholar
  26. Lang, S.P., B.E. Struckmeyer, and T.W. Tibbitts. 1983. Morphology and anatomy of intumescence development on tomato plants. Journal of the American Society Horticultural Science 108 (2): 266–271.Google Scholar
  27. Langhans, R. W., and T. W. Tibbitts. 1997. Plant growth chamber handbook. In North central regional research publication no. 340. Iowa agriculture and home economics experiment station special report no. 99, ed. NC-101 Regional Committee on Controlled Environment Technology and Use, 133–141. Ames: Iowa Agricultural and Home Economics Experiment Station.Google Scholar
  28. Levine, M. 1973. Tumors of tobacco hybrids. American Journal of Botany 24: 250–256.CrossRefGoogle Scholar
  29. Marschner, H. 1983. General introduction to the mineral nutrition of plants. In Encyclopedia of plant physiology, vol. 15A, ed. A. Lauchli and R.L. Bielski, 5–60. New York: Springer-Verlag.Google Scholar
  30. Matoh, T., and M. Kobayashi. 1998. "Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls." Journal of Plant Research 111 (1): 179–190.Google Scholar
  31. Morrow, R.C., and T.W. Tibbitts. 1987. Induction of intumescence injury on leaf disks. Jotrnal of the American Society Horticultural Science 112 (2): 304–306.Google Scholar
  32. Morrow, R.C., and T.W. Tibbitts. 1988. Evidence for involvement of phytochrome in tumor development on plants. Plant Physiology 88: 1110–1114.CrossRefGoogle Scholar
  33. Nilsen, K.N. 1971. Plant responses to near-ultraviolet light. HortScience 6: 26–29.Google Scholar
  34. Nilsen, K.N., and N.R. Lersten. 1977. UVB-attenuated irradiance environments and the induction of neoplasms on leaves of tomatoes (Lycopersicon esculentum mill.): Morphological and anatomical aspects. HortScience 12 (4): 45.Google Scholar
  35. Ozgen, S., B.H. Karlsson, and J.P. Palta. 2006. Response of potatoes (cv russet Burbank) to supplemental calcium applications under field conditions: Tuber calcium, yield, and incidence of internal brown spot. American Journal of Potato Research 83: 195–204.CrossRefGoogle Scholar
  36. Palta, J.P. 2010. Improving potato tuber quality and production by targeted calcium nutrition: The discovery of tuber roots leading to a new concept in potato nutrition. Potato Research 53: 267–275.CrossRefGoogle Scholar
  37. Pinkard, E., W. Gill, and C. Mohammed. 2006. Physiology and anatomy of lenticel-like structures on leaves of Eucalyptus nitens and Eucalyptus globulus seedlings. Tree Physiology 26: 989–999.CrossRefGoogle Scholar
  38. Rangarajan, A., and T.W. Tibbitts. 1994. Exposure with far-red radiation for control of oedema injury on "Yale" ivy geranium. Hortscience 29 (1): 38–40.Google Scholar
  39. Roloff, I., H. Scherm, and M.W. Van Lersel. 2004. Photosynthesis of blueberry leaves as affected by Septoria leaf spot and abiotic leaf damage. Plant Disease 88: 397–401.CrossRefGoogle Scholar
  40. Shear, C.B. 1975. Calcium-related disorders of fruits and vegetables. Hortscience 10: 361–365.Google Scholar
  41. Simon, E.W. 1978. The symptoms of calcium deficiency in plants. The New Phytologist 80: 1–15.CrossRefGoogle Scholar
  42. Snoad, B., and P. Matthews. 1969. Neoplasms of the pea pod. In Chromosomes today, ed. C.D. Darlington and K.R. Lewis, 126–131. Edinburgh: Oliver-Boyd.Google Scholar
  43. Sterrett, S.B., and M.R. Henninger. 1991. Influence of calcium on internal heat necrosis of Atlantic potato. American Potato Journal 68 (7): 467–477.CrossRefGoogle Scholar
  44. Wample, R.L., and D.M. Reid. 1979. The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (helianthus annuus). Physiologia Plantarum 45 (2): 219–226.CrossRefGoogle Scholar
  45. Warrington, I.J. 1980. Humidity-induced gall formation on Eucalyptus species. Australian Forest Research 10: 185–189.Google Scholar
  46. White, P.J. 2001. The pathways of calcium movement to the xylem. Journal of Experimental Botany 52 (358): 891–899.CrossRefGoogle Scholar
  47. White, P.J., and M.R. Broadley. 2003. Calcium in plants. Annals of Botany (London) 92: 487–511.CrossRefGoogle Scholar
  48. Wolf, F.A., and F.E. Lloyd. 1912. Oedema in Manihot. Phytopathology 21: 131–135.Google Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations