American Journal of Potato Research

, Volume 96, Issue 1, pp 1–5 | Cite as

Three Cycles of Recurrent Maternal Half-Sib Selection Continue to Reduce Foliar Late Blight in a Diploid Hybrid Solanum phureja-S. stenotomum Population

  • Kathleen G. HaynesEmail author
  • Xinshun Qu


Increasing levels of foliar resistance to late blight, caused by Phytophthora infestans, have previously been reported through two cycles of recurrent maternal half-sib selection in a diploid hybrid population of Solanum phureja-S. stenotomum. The objective of this study was to determine if continued improvements for resistance to late blight could be realized by another cycle of selection. Four clones from each of 72 maternal half-sib families constituting the cycle four population were evaluated for late blight resistance in replicated field trials in Pennsylvania in 2015 and 2016. The experimental design was a randomized complete block design with two replications each year. P. infestans US23 genotype was used in inoculations each year. Area under the disease progress curve (AUDPC) was calculated based on visual assessment of foliar disease five times late in the season each year and subjected to statistical and genetic analyses. Mean AUDPC in the cycle one, two, three, and four populations was 652, 556, 276, and 173, respectively. Narrow-sense heritability for resistance decreased in the cycle four population (h2 = 0.54) as compared to prior populations (0.77 ≤ h2 ≤ 0.80), however, broad-sense heritability remained high (H = 0.83). Additional improvements for late blight resistance are likely to occur if this approach is continued.


Diploid potato breeding Germplasm enhancement Phytophthora infestans Narrow-sense heritability Broad-sense heritability Population improvement 


Se ha reportado previamente aumento en los niveles de resistencia foliar al tizón tardío, causado por Phytophthora infestans, a lo largo de dos ciclos de selección maternal recurrente media en una población de híbrido diploide de Solanum phureja-S. stenotomum. El objetivo de este estudio fue determinar si mejoramientos continuos para resistencia al tizón tardío pudieran hacerse mediante otro ciclo de selección. Cuatro clones de cada una de 72 medias familias maternales que constituyeron la población del cuarto ciclo se evaluaron para resistencia al tizón tardío en ensayos de campo repetidos en Pennsylvania en 2015 y 2016. El diseño experimental fue de bloques completos al azar con dos repeticiones por año. Se usó el genotipo US23 de P. infestans en las inoculaciones de cada año. Se calculó el área bajo la curva de progreso de la enfermedad (AUDPC) con base en evaluación foliar de la enfermedad cinco veces al final del ciclo cada año y fue objeto de análisis estadístico y genético. La media del AUDPC en las poblaciones de los ciclos uno, dos, tres y cuatro fue de 652, 556, 276 y 173, respectivamente. La heredabilidad para la resistencia en el sentido estrecho disminuyó en la población del cuarto ciclo (h2 = 0.54) en comparación con las poblaciones previas (0.77 < h2 < 0.80). No obstante, la heredabilidad en el sentido amplio permaneció alta (H = 0.83). Es probable que se presenten mejoramientos adicionales para la resistencia al tizón tardío si se continúa con este enfoque.


  1. Champouret, N. 2010. Functional genomics of Phytophthora infestans and Solanum resistance genes. PhD thesis. Wageningen Univ. 154 pp.Google Scholar
  2. Chien, D.H., Z.N. Ganga, P. Van der Zaag, and P. Schmiediche. 1990. Preliminary results on breeding potato through recurrent selection for Phytophthora infestans resistance and adaptation to highland tropics. Asian Potato Journal (Philippines) 1: 12–19.Google Scholar
  3. Ewing, E.E., I. Simko, C.D. Smart, M.W. Bonierbale, E.S.G. Mizubuti, G.D. May, and W.E. Fry. 2000. Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Molecular Breeding 6: 25–36.CrossRefGoogle Scholar
  4. Falconer, D.S. 1981. Introduction to quantitative genetics. 2nd ed. New York: Longman, Inc..Google Scholar
  5. Fry, W. 2008. Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology 9: 385–402.CrossRefGoogle Scholar
  6. Hallauer, A.R., and J.B. Miranda. 1981. Quantitative genetics in maize breeding. Ames: Iowa State University Press.Google Scholar
  7. Haynes, K.G., and B.J. Christ. 1999. Heritability of resistance to foliar late blight in a diploid hybrid potato population of Solanum phureja x Solanum stenotomum. Plant Breeding 118: 431–434.CrossRefGoogle Scholar
  8. Haynes, K.G., and B.J. Christ. 2006. Recurrent maternal half-sib selection improves resistance to foliar late blight in a diploid hybrid Solanum phureja – S. stenotomum population. American Journal of Potato Research 83: 181–188.CrossRefGoogle Scholar
  9. Haynes, K.G., X. Qu, and B.J. Christ. 2014. Two cycles of recurrent maternal half-sib selection reduce foliar late blight in a diploid hybrid Solanum phureja – S. stenotomum population by two-thirds. American Journal Potato Research 91: 254–259.CrossRefGoogle Scholar
  10. Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.CrossRefGoogle Scholar
  11. Kuhl, J.C., R.E. Hanneman Jr., and M.J. Havey. 2001. Characterization and mapping of Rpi1, a late-blight resistance locus from diploid (1EBN) Mexican Solanum pinnatisectum. Molecular Genetics and Genomics 265: 977–985.CrossRefGoogle Scholar
  12. Landeo, J.A., M. Gastelo, H. Pinedo, and F. Flores. 1995. Breeding for horizontal resistance to late blight in potato free of R genes. In Phytophthora infestans 150, ed. L.J. Dowley, E. Bannon, L.R. Cooke, T. Keane, and E. O’Sullivan, 268–274. Dublin: Boole Press.Google Scholar
  13. Leonards-Schippers, C., W. Gieffers, R. Schäfer-Pregl, E. Ritter, S.J. Knapp, F. Salamini, and C. Gebhardt. 1994. Quantitative resistance to Phytophthora infestans in potato: A case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77.Google Scholar
  14. Lokossou, A. A. 2010. Dissection of the major late blight resistance cluster on potato linkage group IV. PhD thesis. Wageningen Univ. 142 pp.Google Scholar
  15. Naess, S.K., J.M. Bradeen, S.M. Wielgus, G.T. Haberlach, J.M. McGrath, and J.P. Helgeson. 2000. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theoretical and Applied Genetics 101: 697–704.CrossRefGoogle Scholar
  16. Niederhauser, J.S., J. Cervantes, and L. Servin. 1954. Late blight in Mexico and its implications. Phytopathology 44: 406–408.Google Scholar
  17. Nyquist, W.E. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Science 10: 235–322.CrossRefGoogle Scholar
  18. Oberhagemann, P., C. Chatot-Balandras, R. Schäfer-Pregl, D. Wegener, C. Palomino, F. Salamini, E. Bonnel, and C. Gebhardt. 1999. A genetic analysis of quantitative resistance to late blight in potato: Towards marker-assisted selection. Molecular Breeding 5: 399–415.CrossRefGoogle Scholar
  19. Pel, M.A., S.J. Foster, T.H. Park, H. Rietman, G. van Arkel, J.D.G. Jones, H.J. Van Eck, E. Jacobsen, R.G.F. Visser, and E.A.G. Van der Vossen. 2009. Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Molecular Plant-Microbe Interactions 22: 601–615.CrossRefGoogle Scholar
  20. Rauscher, G.M., C.D. Smart, I. Simko, M. Bonierbale, H. Mayton, A. Greenland, and W.E. Fry. 2006. Characterization and mapping of R Pi-ber , a novel potato late blight resistance gene from Solanum berthaultii. Theoretical and Applied Genetics 112: 674–687.CrossRefGoogle Scholar
  21. Shaner, G., and R.E. Finney. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67: 1051–1056.CrossRefGoogle Scholar
  22. Simko, I. 2002. Comparative analysis of quantitative trait loci for foliage resistance to Phytophthora infestans in tuber-bearing Solanum species. American Journal of Potato Research 79: 125–132.CrossRefGoogle Scholar
  23. Sliwka, J., H. Jakuczun, R. Lebecka, W. Marczewski, C. Gebhardt, and E. Zimnoch-Guzowska. 2006. The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetative period. Theoretical and Applied Genetics 113: 685–695.CrossRefGoogle Scholar
  24. Smilde, W.D., G. Brigneti, L. Jagger, S. Perkins, and J.D.G. Jones. 2005. Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theoretical and Applied Genetics 110: 252–258.CrossRefGoogle Scholar
  25. Song, J., J.M. Bradeen, S.K. Naess, J.A. Raasch, S.M. Wielgus, G.T. Haberlach, J. Liu, H. Kuang, S. Austin-Phillips, C.R. Buell, J.P. Helgeson, and J. Jiang. 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America 100: 9128–9133.CrossRefGoogle Scholar
  26. Tarn, T.R., R.H. Bagnall, W.A. Hodgson, C.H. Lawrence, and K.G. Proudfoot. 2003. Multiple resistance to diseases in a population of long-day adapted Andigena potatoes. Acta Horticulturae 619: 189–194.CrossRefGoogle Scholar
  27. Umaerus, V., and M. Umaerus. 1994. Inheritance of resistance to late blight. In Potato Genetics, ed. J.E. Bradshaw and G.R. Mackay, 365–401. Wallingford: CAB International.Google Scholar
  28. van der Vossen, E., A. Sikkema, B. te Lintel Hekkert, J. Gros, P. Stevens, M. Muskens, D. Wouters, A. Pereira, W. Stiekema, and S. Allefs. 2003. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal 36: 867–882.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Laboratory, U.S. Department of AgricultureBeltsvilleUSA
  2. 2.Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations