Acrylamide Formation in Processed Potatoes as Affected by Cultivar, Nitrogen Fertilization and Storage Time

Article

Abstract

The affirmation of acrylamide as a probable carcinogen by the European Food Safety Authority has reinforced the need to lower acrylamide content in fried potato products. Selected for low reducing sugars and acrylamide-forming potential, recently released cultivars ‘Alpine Russet’, ‘Dakota Trailblazer’, and ‘Ivory Crisp’ were evaluated for their processing quality when grown with varying nitrogen (N) fertilizer regimes. The objective of this study was to determine the effects of N fertilizer rate (34, 135, 202, 269 and 336 kg ha−1) on tuber glucose and acrylamide concentration following processing of new cultivars relative to standard cultivars ‘Russet Burbank’ and ‘Snowden’ at harvest, and after 3, 6 and 9 months of storage at 7.2 °C over 2 years. Glucose and acrylamide responses to N rate were similar for chip cultivars, which linearly decreased in 2011, and quadratically increased then decreased in 2012 with increasing N rate. The N rate effect on French fry glucose concentration varied by cultivar and either decreased or did not respond to elevated N rate. Glucose and acrylamide concentrations of chip cultivars generally increased during storage, with a dramatic increase in ‘Snowden’ resulting from senescence sweetening after 9 months of storage. Environmental conditions significantly affected glucose and acrylamide responses of French fry cultivars to storage time. Glucose and acrylamide concentrations of all French fry cultivars generally increased during storage in 2011. In contrast, glucose concentrations of French fry cultivars were stable or increased, while acrylamide concentrations generally decreased during storage in 2012. The relationship between chip color and glucose concentration was significant, but differed by year. Glucose and acrylamide concentrations of French fry and chip cultivars were significantly correlated (R2 = 0.52 and 0.66, in 2011 and 2012, respectively). Generally, acrylamide in fried potato products can be minimized by using low reducing sugar cultivars supplied with a N fertilizer rate that optimizes yield and quality during growing seasons with minimal environmental stress.

Keywords

Glucose Reducing sugars Fry color Solanum tuberosum 

Resumen

La afirmación de la acrilamida como probable carcinógeno por la Autoridad Europea de Seguridad Alimentaria ha reforzado la necesidad de bajar el contenido de la acrilamida en los productos de papas fritas. Seleccionadas por sus bajos azucares reductores y el bajo potencial de formación de acrilamida, las variedades recientemente liberadas ‘Alpine Russet’, ‘Dakota Trailblazer’, y ‘Ivory Crisp’, se evaluaron por su cualidad de procesamiento cuando se cultivaron con varios regímenes de fertilizante nitrogenado (N). El objetivo de este estudio fue determinar los efectos del nivel del fertilizante N (34, 135, 202, 269 y 336 kg ha −1) sobre el contenido de glucosa del tubérculo y concentración de acrilamida después del procesamiento de las nuevas variedades en relación con las estándar “Russet Burbank” y “Snowden” a la cosecha, y después de 3, 6, y 9 meses de almacenamiento a 7.2 °C durante dos años. Las respuestas de la glucosa y la acrilamida al nivel de N fueron similares para las variedades de fritura, que disminuyeron linealmente en 2011, y se incrementaron cuadráticamente y después disminuyeron en 2012 con aumentos de nivel de N. El efecto de la dosis nitrogenada en la concentración de glucosa en las papas a la francesa varió por cultivar y disminuyó o no respondió a alto nivel de N. Las concentraciones de glucosa y acrilamida de las variedades de hojuelas generalmente aumentaron durante el almacenamiento, con un aumento dramático en “Snowden” como resultado del endulzamiento por la senectud después de nueve meses de almacenamiento. Las condiciones ambientales afectaron significativamente las respuestas de glucosa y acrilamida de variedades para papas a la francesa respecto al tiempo de almacén. Las concentraciones de glucosa y acrilamida de todas las variedades de papas a la francesa generalmente aumentaron durante el almacenamiento en 2011. En contraste, las concentraciones de glucosa de estas variedades fueron estables o aumentaron, mientras que las concentraciones de acrilamida generalmente disminuyeron durante el almacenamiento en 2012. La relación entre el color de la hojuela y la concentración de glucosa fue significativa, pero difirió por año. Las concentraciones de glucosa y acrilamida de las variedades para francesas y para hojuelas estuvieron correlacionadas significativamente (R2 = 0.52 y 0.66, en 2011 y 2012, respectivamente). Generalmente, la acrilamida en los tubérculos de papa en los productos de papa frita con bajas concentraciones de acrilamida, se pueden minimizar usando variedades de bajos azucares reductores suplementadas con el nivel apropiado de N que optimice la producción de rendimiento y calidad durante los ciclos de crecimiento con mínimo agobio ambiental.

Notes

Acknowledgements

We thank the Minnesota Department of Agriculture and the North Dakota Department of Agriculture for supporting this research through grants from the USDA/NIFA Specialty Crops Block program, Martin Glynn for assistance with sugar analysis, and Bruce Witthuhn for assistance with acrylamide analysis.

Supplementary material

12230_2018_9647_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27.3 kb)
12230_2018_9647_MOESM2_ESM.docx (28 kb)
ESM 2 (DOCX 28.0 kb)
12230_2018_9647_MOESM3_ESM.docx (47 kb)
ESM 3 (DOCX 46.6 kb)
12230_2018_9647_MOESM4_ESM.docx (37 kb)
ESM 4 (DOCX 37.1 kb)
12230_2018_9647_MOESM5_ESM.docx (44 kb)
ESM 5 (DOCX 43.9 kb)
12230_2018_9647_MOESM6_ESM.docx (38 kb)
ESM 6 (DOCX 37.5 kb)

References

  1. Amrein, T.M., S. Bachmann, A. Noti, M. Biedermann, M.F. Barbosa, S. Biedermann-Brem, K. Grob, A. Keiser, P. Realini, F. Escher, and R. Amadó. 2003. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. Journal of Agriculture and Food Chemistry 51: 5556–5560.CrossRefGoogle Scholar
  2. Amrein, T.M., B. Schönbächler, F. Rohner, H. Lukac, H. Schneider, A. Keiser, F. Escher, and R. Amadò. 2004. Potential for acrylamide formation in potatoes: Data from the 2003 harvest. European Food Research and Technology 219: 572–578.CrossRefGoogle Scholar
  3. Bethke, P.C., and A.J. Bussan. 2013. Acrylamide in processed potato products. American Journal of Potato Research 90: 403–424.CrossRefGoogle Scholar
  4. Blenkinsop, R.W., L.J. Copp, R.Y. Yada, and A.G. Marangoni. 2002. Changes in compositional parameters of tubers of potato (Solanum tuberosum) during low-temperature storage and their relationship to chip processing quality. Journal of Agricultural and Food Chemistry 50: 4545–4553.CrossRefPubMedGoogle Scholar
  5. Chuda, Y.H., H. Yada Ono, A. Ohara-Takada, C. Matsuura-Endo, and M. Mori. 2003. Effects of physiological changes in potato tubers (Solanum tuberosum L.) after low temperature storage on the level of acrylamide formed in potato chips. Bioscience, Biotechnology and Biochemistry 67: 1188–1190.CrossRefGoogle Scholar
  6. Cunningham, C.E., and F.J. Stevenson. 1963. Inheritance of factors affecting potato chip color and their association with specific gravity. American Potato Journal 40: 253–265.CrossRefGoogle Scholar
  7. De Wilde, T.B., Meulenaer De, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, and J.M. Degroodt. 2005. Influence of storage practices on acrylamide formation during potato frying. Journal of Agricultural and Food Chemistry 53: 6550–6557.CrossRefPubMedGoogle Scholar
  8. De Wilde, T.B., Meulenaer De, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, and J.M. Degroodt. 2006. Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. Journal of Agricultural and Food Chemistry 54: 404–408.CrossRefPubMedGoogle Scholar
  9. Elbashir, H.A. and I. K. Saeed. 2014. Reconditioning of cold stored potato varieties (Solanum tuberosum L.) Kondor and Markies. Journal of Agri-Food and Applied Sciences 2: 230.Google Scholar
  10. Elmore, J.S., A. Briddon, A.T. Dodson, N. Muttucumaru, N.G. Halford, and D.S. Mottram. 2015. Acrylamide in potato crisps prepared from 20 UK-grown varieties: Effects of variety and tuber storage time. Food Chemistry 182: 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. European Food Safety Authority. 2011. EFSA publishes report on monitoring and exposure assessment of acrylamide. http://www.efsa.europa.eu/en/press/news/datex110420. Accessed on 20 December 2016.
  12. European Food Safety Authority. 2015. Acrylamide in food is a public health concern. http://www.efsa.europa.eu/en/press/news/150604. Accessed on 20 December 2016.
  13. Friedman, M. 2003. Chemistry, biochemistry and safety of acrylamide. Journal of Agricultural and Food Chemistry 51: 4504–4526.CrossRefPubMedGoogle Scholar
  14. Gerendás, J., F. Heuser, and B. Sattelmacher. 2007. Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. Journal of Plant Nutrition 30: 1499–1516.CrossRefGoogle Scholar
  15. Halford, N.G., T.Y. Curtis, N. Muttucumaru, J. Postles, J.S. Elmore, and D.S. Mottrom. 2012. The acrylamide problem: A plant and agronomic science issue. Journal of Experimental Botany 63: 2841–2851.CrossRefPubMedGoogle Scholar
  16. Hogervorst, J.G., L.J. Schouten, E.J. Konings, R.A. Goldbohm, and P.A. van den Brandt. 2007. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiology Biomarkers & Prevention 16: 2304–2313.CrossRefGoogle Scholar
  17. Johnson, K.A., S.J. Gorzinski, K.M. Bodner, R.A. Campbell, C.H. Wolf, M.A. Friedman, and R.W. Mast. 1986. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicology and Applied Pharmacology 85: 154–168.CrossRefPubMedGoogle Scholar
  18. Kincaid, D.C., D.T. Westermann, and T.J. Trout. 1993. Irrigation and soil temperature effects on russet Burbank quality. American Potato Journal 70: 711–723.CrossRefGoogle Scholar
  19. Knowles, N.R., E.P. Driskill, and L.O. Knowles. 2009. Sweetening responses of potato tubers of different maturity to conventional and non-conventional storage temperature regimes. Postharvest Biology and Technology 52: 49–61.CrossRefGoogle Scholar
  20. Knowles, N.R., M.J. Pavek and L.O. Knowles. 2015. Developmental profiles, nitrogen use and postharvest quality of Alpine and Sage Russet potatoes in the Columbia Basin. Annual Washington and Oregon Potato Conference, Jan. 27–30, Kennwick, WA. 37–50. http://www.nwpotatoresearch.com/IPMStuff/PDFs/Proceedings2015.pdf. Accessed 12 December 2016.
  21. Kumar, D., B.P. Singh, and P. Kumar. 2004. An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology 145: 247–256.CrossRefGoogle Scholar
  22. Lea, P.J., L. Sodek, M.A. Parry, P.R. Shewry, and N.G. Halford. 2007. Asparagine in plants. Annals of Applied Biology 150: 1–26.CrossRefGoogle Scholar
  23. Long, C.M., S.S. Snapp, D.S. Douches, and R.W. Chase. 2004. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seed piece spacing. American Journal of Potato Research 81: 347–357.CrossRefGoogle Scholar
  24. Matsuura-Endo, C., A. Kobayashi, T. Noda, S. Takigawa, H. Yamauchi, and M. Mori. 2004. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. Journal of Plant Research 117: 131–137.CrossRefPubMedGoogle Scholar
  25. Matsuura-Endo, C., A. Ohara-Takada, Y. Chuda, H. Ono, H. Yada, M. Yoshida, A. Kobayashi, S. Tsuda, S. Takigawa, T. Noda, and H. Yamauchi. 2006. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Bioscience, Biotechnology and Biochemistry 70: 1173–1180.CrossRefGoogle Scholar
  26. Michalak, J., E. Gujska, and J. Klepacka. 2011. The effect of domestic preparation of some potato products on acrylamide content. Plant Foods for Human Nutrition 66: 307–312.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mucci, L.A., and K.M. Wilson. 2008. Acrylamide intake through diet and human cancer risk. Journal of Agricultural and Food Chemistry 56: 6013–6019.CrossRefPubMedGoogle Scholar
  28. Mucci, L.A., P.W. Dickman, G. Steineck, H.O. Adami, and K. Augustsson. 2003. Dietary acrylamide and cancer of the large bowel, kidney, and bladder: Absence of an association in a population-based study in Sweden. British Journal of Cancer 88: 84–89.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mucci, L.A., P. Lindblad, G. Steineck, and H.O. Adami. 2004. Dietary acrylamide and risk of renal cell cancer. International Journal of Cancer 109: 774–776.CrossRefPubMedGoogle Scholar
  30. Mucci, L.A., H.O. Adami, and A. Wolk. 2006. Prospective study of dietary acrylamide and risk of colorectal cancer among women. International Journal of Cancer 118: 169–173.CrossRefPubMedGoogle Scholar
  31. Muttucumaru, N., S.J. Powers, J.S. Elmore, D.S. Mottram, and N.G. Halford. 2013. Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry 61: 6734–6742.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muttucumaru, N., S.J. Powers, J.S. Elmore, A. Briddon, D.S. Mottram, and N.G. Halford. 2014. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato. Annals of Applied Biology 164: 286–300.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ohara-Takada, A., C. Matsuura-Endo, Y. Chuda, H. Ono, H. Yada, M. Yoshida, A. Kobayashi, S. Tsuda, S. Takigawa, T. Noda, and H. Yamauchi. 2005. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Bioscience, Biotechnology, and Biochemistry 69: 1232–1238.CrossRefPubMedGoogle Scholar
  34. Parker, J.K., D.P. Balagiannis, J. Higley, G. Smith, B.L. Wedzicha, and D.S. Mottram. 2012. Kinetic model for the formation of acrylamide during the finish-frying of commercial French fries. Journal of Agricultural and Food Chemistry 60: 9321–9331.CrossRefPubMedGoogle Scholar
  35. Pelucchi, C., C. Galeone, F. Levi, E. Negri, S. Franceschi, R. Talamini, C. Bosetti, A. Giacosa, and C. La Vecchia. 2006. Dietary acrylamide and human cancer. International Journal of Cancer 118: 467–471.CrossRefPubMedGoogle Scholar
  36. Powers, S.J., D.S. Mottram, A. Curtis, and N.G. Halford. 2013. Acrylamide concentrations in potato crisps in Europe from 2002 to 2011. Food Additives & Contaminants: Part A 30: 1493–1500.CrossRefGoogle Scholar
  37. Rowe, R.C. and D. Curwen. 1993. Potato health management. APS Press.Google Scholar
  38. Santerre, C.R., J.N. Cash, and R.W. Chase. 1986. Influence of cultivar, harvest-date and soil nitrogen on sucrose, specific gravity and storage stability of potatoes grown in Michigan. American Potato Journal 63: 99–110.CrossRefGoogle Scholar
  39. Sowokinos, J.R. 1971. Relationship of sucrose synthetase cleavage activity to the chemical and physical maturity of Norchip and Kennebec potatoes. American Potato Journal 48: 37–46.CrossRefGoogle Scholar
  40. Sowokinos, J. 1990. Effect of stress and senescence on carbon partitioning in stored potatoes. American Journal of Potato Research 67: 849–857.CrossRefGoogle Scholar
  41. Sowokinos, J.R. and D.A. Preston. 1988. Maintenance of potato processing quality by chemical maturity monitoring (CMM). Minnesota Agricultural Experiment Station. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/123027. Accessed on 21 December 2016.
  42. Sun, N., C.J. Rosen, and A.L. Thompson. 2017. Nitrogen response of French fry and chip cultivars selected for low reducing sugars. American Journal of Potato Research 94: 606–616.  https://doi.org/10.1007/s12230-017-9599-8.CrossRefGoogle Scholar
  43. Thompson, A.L., S.L. Love, J.R. Sowokinos, M.K. Thornton, and C.C. Shock. 2008. Review of the sugar end disorder in potato (Solanum tuberosum, L.). American Journal of Potato Research 85: 375–386.CrossRefGoogle Scholar
  44. Tsukakoshi, Y., H. Ono, N. Kibune, S. Isagawa, K. Yamazaki, M. Watai and M., Yoshida. 2012. Monitoring of acrylamide concentrations in potato chips in Japan between 2006 and 2010. Food Additives & Contaminants: Part A, 29: 1212–1218.Google Scholar
  45. Vinci, R.M., F. Mestdagh, and B. De Meulenaer. 2012. Acrylamide formation in fried potato products–present and future, a critical review on mitigation strategies. Food Chemistry 133: 1138–1154.CrossRefGoogle Scholar
  46. Weber, E.A., S. Graeff, W.D. Koller, W. Hermann, N. Merkt, and W. Claupein. 2008. Impact of nitrogen amount and timing on the potential of acrylamide formation in winter wheat (Triticum aestivum L.). Field Crops Research 106: 44–52.CrossRefGoogle Scholar
  47. Westermann, D.T., D.W. James, T.A. Tindall, and R.L. Hurst. 1994. Nitrogen and potassium fertilization of potatoes: Sugars and starch. American Potato Journal 71: 433–453.CrossRefGoogle Scholar
  48. Whitworth, J.L., R.G. Novy, J.C. Stark, J.J. Pavek, D.L. Corsini, S.L. Love, N. Olsen, S.K. Gupta, T. Brandt, M.I. Vales, and A.R. Mosley. 2011. Alpine russet: A potato cultivar having long tuber dormancy making it suitable for processing from long-term storage. American Journal of Potato Research 88: 256–268.CrossRefGoogle Scholar
  49. Wilson, M.L., C.J. Rosen, and J.F. Moncrief. 2009. Potato response to a polymer-coated urea on an irrigated, coarse-textured soil. Agronomy Journal 101: 897–905.CrossRefGoogle Scholar
  50. Wiltshire, J.J.J., and A.H. Cobb. 1996. A review of the physiology of potato tuber dormancy. Annals of Applied Biology 129: 553–569.CrossRefGoogle Scholar
  51. Zebarth, B.J., Y. Leclerc, G. Moreau, and E. Botha. 2004. Rate and timing of nitrogen fertilization of russet Burbank potato: Yield and processing quality. Canadian Journal of Plant Science 84: 855–863.CrossRefGoogle Scholar
  52. Zhu, F., Y.Z. Cai, J. Ke, and H. Corke. 2010. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. Journal of the Science of Food and Agriculture 90: 2254–2262.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Department of Soil, Water and ClimateUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations