Comparison of Two Strategies to Introgress Genes for Resistance to Common Scab from Diploid Solanum chacoense into Tetraploid Cultivated Potato

  • Shelley JanskyEmail author
  • Kathleen Haynes
  • David Douches


Wild potato relatives are important sources of novel genes useful for potato improvement. Since most wild potato species are diploid and most cultivars are tetraploid, it is typically necessary to employ ploidy manipulations to access wild potato germplasm. A common strategy is unilateral sexual polyploidization (USP), in which a tetraploid cultivated clone is crossed with a diploid that produces 2n gametes. The diploid parent may be a wild plant selected for a trait of interest. Alternatively, the wild plant may be crossed to a cultivated diploid and, after selection, the diploid hybrid is then crossed to the tetraploid parent. This study was designed to compare these two strategies for the introgression of common scab resistance from wild diploid Solanum chacoense (chc) into cultivated potato. Progeny were evaluated in naturally scab-infested soil in Maine and Michigan. There were no differences between introgression methods for tuber surface area covered by scab. Scab lesions were significantly more severe when a hybrid was used as the diploid parent, but this difference is likely not large enough to be important in a breeding program. Reciprocal cross differences were not significant. However, location x clone interactions were detected for both surface area and lesion type. This study revealed that, while hybridization strategy did not play a major role in developing this scab resistant germplasm, it is critical to consider production environment when screening for resistance.


Unilateral sexual polyploidization 2n gametes Streptomyces scabies Solanum tuberosum Disease resistance breeding 


Los parientes silvestres de la papa son fuentes importantes de genes novedosos útiles para el mejoramiento de la papa. Considerando que la mayoría de las especies silvestres de papa son diploides, y la mayoría de las variedades son tetraploides, es necesario típicamente emplear manipulaciones de ploidía para tener acceso al germoplasma de papa silvestre. Una estrategia común es poliploidización sexual unilateral (USP), en la cual un clon tetraploide cultivado se cruza con un diploide que produce gametos 2n. El progenitor diploide puede ser una planta silvestre seleccionada por un carácter de interés. Alternativamente, la planta silvestre pudiera cruzarse a una diploide cultivada, y después de la selección, el híbrido diploide se cruza con el progenitor tetraploide. Este estudio se diseñó para comparar estas dos estrategias para la introgresión de la resistencia a la roña común de la especie silvestre Solanum chacoense (chc) en papa cultivada. Se evaluó la progenie en un suelo infestado de roña de manera natural en Maine y Michigan. No hubo diferencias entre los métodos de la introgresión para área de la superficie del tubérculo cubierta por roña. Las lesiones por roña fueron significativamente más severas cuando se usó un híbrido como el progenitor diploide, pero esta diferencia es probable que no sea lo suficientemente grande para ser importante en un programa de mejoramiento. Las diferencias en cruzas recíprocas no fueron significativas. No obstante, las interacciones localidad x clon se detectaron tanto para área en la superficie como para el tipo de lesión. Este estudio reveló que mientras la estrategia de hibridación no juega un papel mayor en el desarrollo de germoplasma resistente a la roña, es crítico considerar el ambiente de producción cuando se evalúa para resistencia.


  1. Akeley, R.V., W.R. Mills, C.E. Cunningham, and J. Watts. 1968. Lenape: A new potato variety high in solids and chipping quality. American Potato Journal 45: 142–145.CrossRefGoogle Scholar
  2. Bethke, P.C.P., D.A. Halterman, and S. Jansky. 2017. Are we getting better at using wild potato species in light of new tools? Crop Science. 57: 1–18.CrossRefGoogle Scholar
  3. Bradshaw, J.E., G.J. Bryan, and G. Ramsay. 2006. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research. 49: 49–65.CrossRefGoogle Scholar
  4. Braun, S. 2013. Quantitative trait loci analysis and breeding for resistance to common scab in potato. Ph.D. Thesis. University of Wisconsin-Madison.Google Scholar
  5. Braun, S.R., J.B. Endelman, K.G. Haynes, and S.H. Jansky. 2017a. Quantitative trait loci for resistance to common scab and cold-induced sweetening in diploid potato. Plant Genome 10 (3).Google Scholar
  6. Braun, S., A. Gevens, A. Charkowski, C. Allen, and S. Jansky. 2017b. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American Journal of Potato Research 94: 283–296.CrossRefGoogle Scholar
  7. Buso, J.A., L.S. Boiteux, and S.J. Peloquin. 1999. Evaluation under long-day conditions of 4x-2x progenies from crosses between potato cultivars and haploid Tuberosum-Solanum chacoense hybrids. Annual Review of Applied Biology 135: 35–40.Google Scholar
  8. Capo, A., M. Cammareri, F. Della Rocca, A. Errico, A. Zoina, and C. Conicella. 2002. Evaluation for chipping and tuber soft rot (Erwinia carotovora) resistance in potato clones from unilateral sexual polyploidization (2x x 4x). American Journal of Potato Research 79: 139–145.CrossRefGoogle Scholar
  9. Christensen, C.T., L. Zotarelli, K.G. Haynes, and J. Colee. 2017. Rooting characteristics of Solanum chacoense and Solanum tuberosum in vitro. American Journal of Potato Research 94: 588–598.CrossRefGoogle Scholar
  10. De Jong, H., and P.R. Rowe. 1971. Inbreeding in cultivated diploid potatoes. Potato Research 14: 74–83.CrossRefGoogle Scholar
  11. Dionne, L.A., and C.H. Lawrence. 1961. Early scab resistant derivatives of Solanum chacoense x Solanum phureja. American Potato Journal 38: 6–8.CrossRefGoogle Scholar
  12. Douches, D., J. Coombs, R. Hammerschmidt, W. Kirk, and C. Long. 2009. Kalkaska: A round white chip-processing potato variety with common scab resistance. American Journal of Potato Research 86: 347–355.CrossRefGoogle Scholar
  13. Driscoll, J., J. Coombs, R. Hammerschmidt, W. Kirk, L. Wanner, and D. Douches. 2009. Greenhouse and field nursery evaluation for potato common scab tolerance in a tetraploid population. American Journal of Potato Research 86: 96–101.CrossRefGoogle Scholar
  14. Endelman, J.B., C.A. Schmitz Carley, D.S. Douches, J.J. Coombs, B. Bizimungu, W.S. De Jong, K.G. Haynes, D.G. Holm, J.C. Miller Jr., R.G. Novy, J.P. Palta, D.L. Parish, G.A. Porter, V.R. Sathuvalli, A.L. Thompson, and G.C. Yencho. 2017. Pedigree reconstruction with genome-wide markers in potato. American Journal of Potato Research 94: 184–190.CrossRefGoogle Scholar
  15. Errebhi, M., C. Rosen, and F. Lauer. 1999. Evaluation of tuber-bearing Solanum species for nitrogen use efficiency and biomass partitioning. American Journal of Potato Research 76: 143–151.CrossRefGoogle Scholar
  16. Haynes, K.R., R.J. Young, and R. Goth. 1997. Genotype x environment interactions for resistance to common scab in tetraploid potato. Crop Science 37: 1163–1167.CrossRefGoogle Scholar
  17. Haynes, K., L. Wanner, C. Thill, J. Bradeen, J. Miller, R. Novy, J. Whitworth, D. Corsini, and B. Vinyard. 2010. Common scab trials of potato varieties and advanced selections at three U.S. locations. American Journal of Potato Research 87: 261–276.CrossRefGoogle Scholar
  18. Hosaka, K., H. Matsunaga, and K. Senda. 2000. Evaluation of several wild tuber-bearing Solanum species for scab resistance. American Journal of Potato Research 77: 41–45.CrossRefGoogle Scholar
  19. Jansky, S.H. 2000. Breeding for disease resistance in potato (J Janick, Ed.). Plant Breeding Reviews 19: 69–155.Google Scholar
  20. Jansky, S., G. Yerk, and S. Peloquin. 1990. The use of potato haploids to put 2x wild species germplasm into a usable form. Plant Breeding 104: 290–294.CrossRefGoogle Scholar
  21. Jansky, S., D. Douches, and K. Haynes. 2018a. Transmission of scab resistance to tetraploid potato via unilateral sexual polyploidization. American Journal of Potato Research 95: 272–277.CrossRefGoogle Scholar
  22. Jansky, S., D. Douches, and K. Haynes. 2018b. Germplasm release: Three tetraploid potato clones with resistance to common scab. American Journal of Potato Research 95: 178–182.CrossRefGoogle Scholar
  23. Lauer, F., J. Miller, N. Andersen, E. Banttari, A. Kallio, S. Munson, P. Orr, D. Preston, D. Smallwood, J. Sowokinos, G. Titrud, R. Wenkel, J. Wiersma, and D. Wildung. 1988. Krantz: A russet cultivar for the irrigated sands. American Potato Journal 65: 387–391.CrossRefGoogle Scholar
  24. Love, S.L., J.J. Pavek, A. Thompson-Johns, and W. Bohl. 1998. Breeding progress for potato chip quality in north American cultivars. American Journal of Potato Research 75: 27–36.CrossRefGoogle Scholar
  25. Peloquin, S.J., S.H. Jansky, and G.L. Yerk. 1989. Potato cytogenetics and germplasm utilization. American Journal of Potato Research 66: 629–638.CrossRefGoogle Scholar
  26. Plaisted, R.L., and R.W. Hoopes. 1989. The past record and future prospects for the use of exotic potato germplasm. American Journal of Potato Research 66: 603–627.CrossRefGoogle Scholar
  27. Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review 80: 283–383.CrossRefGoogle Scholar
  28. USDA-ARS. 2011. United States standards for grades of potatoes, 14.Google Scholar
  29. Wanner, L. 2009. A patchwork of Streptomyces species isolated from potato common scab lesions in North America. American Journal of Potato Research 86: 247–264.CrossRefGoogle Scholar
  30. Wanner, L., and K. Haynes. 2009. Aggressiveness of Streptomyces on four potato cultivars and implications for common scab resistance breeding. American Journal of Potato Research 86: 335–346.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.USDA-ARSUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.USDA-ARSBeltsvilleUSA
  3. 3.Michigan State UniversityEast LansingUSA

Personalised recommendations