American Journal of Potato Research

, Volume 96, Issue 2, pp 151–163 | Cite as

The Nutritional Contribution of Potato Varietal Diversity in Andean Food Systems: a Case Study

  • Stef de HaanEmail author
  • Gabriela Burgos
  • Reyna Liria
  • Flor Rodriguez
  • Hilary M. Creed-Kanashiro
  • Merideth Bonierbale
Original Research


Potato is the backbone of agriculture and diets in high-altitude food systems of Peru, where farmers grow diverse varietal portfolios. Here we report on the role of diverse landraces and modern potato varieties in the Andean diet. The dry matter, energy, protein, iron and zinc content of 12 floury and 9 bitter landraces was determined. The contribution of varietal diversity to the dietary intake of energy, protein, iron and zinc was established during two contrasting periods of overall food availability. Results show that the potato and intraspecific diversity make an important contribution to nutrition. Most floury landraces contain higher concentrations of protein and iron compared to the reference value reported in the 2009 Peruvian food composition table for a boiled and peeled floury landrace. Traditional freeze-drying of bitter landraces doesn’t affect energy or iron concentrations, but reduces protein and zinc content considerably. Protein and iron contents in boiled chuño derived from the bitter landraces are lower compared to the mean value reported in the food composition table. The contribution of varietal diversity ideally needs to be taken into account when conducting nutrition studies in diversity hotspots like the Andes where potato is a main staple. The potato adds positively to the nutritional balance and the recommended requirements for energy, protein, iron and zinc of women and children. Floury landraces and modern varieties complement each other in light of seasonality, providing valuable nutrients during contrasting periods of the year. The potato thus contributes positively to food security. However, the overall diversity of the diet was found to be poor, resulting in micronutrient deficiencies. Options to strengthen food based approaches to attend undernutrition are discussed.


Nutrition security Agrobiodiversity Nutrient composition, nutrient intake Micronutrients Seasonality 


La papa es la parte medular de la agricultura y en la dieta en sistemas alimenticios de gran altura en Perú, donde los agricultores cultivan una gran diversidad varietal. Aquí reportamos sobre el papel de diversas variedades nativas y variedades modernas de papa en la dieta andina. Se determinó el contenido de materia seca, energía, proteína, fierro y zinc de 12 variedades nativas harinosas  y 9 nativas amargas. Se estableció la contribución de la diversidad varietal al suministro de la dieta en energía, proteína, hierro y zinc, durante dos períodos contrastantes de la disponibilidad de alimentos en general. Los resultados muestran que la papa y la diversidad intraespecífica hacen una contribución importante a la nutrición. La mayoría de las variedades nativas harinosas contienen más altas concentraciones de proteína y hierro en comparación con el valor de referencia reportado en la tabla peruana de la composición alimenticia de 2009 para una variedad nativa harinosa hervida y pelada. El tradicional congelado-secado de variedades nativas amargas no afecta las concentraciones de energía o hierro, pero reduce los contenidos de proteína y zinc considerablemente. Los contenidos de proteína y hierro en chuño hervido derivado de las variedades nativas amargas son más bajos comparados con el valor medio reportado en la tabla de la composición alimenticia. La contribución de la diversidad varietal necesita tomarse idealmente en cuenta cuando se conduzcan estudios de nutrición en regiones que son centros de diversidad, como son los Andes, donde la papa es un alimento principal. La papa contribuye positivamente al balance nutricional y a los requerimientos recomendados para energía, proteína, hierro y zinc de mujeres y niños. Las variedades nativas harinosas y las modernas se complementan entre ellas respecto a la estacionalidad, proporcionando nutrientes valiosos durante períodos contrastantes del año. De esta manera la papa contribuye positivamente a la seguridad alimentaria. No obstante, la diversidad general de la dieta se encontró pobre, resultando en deficiencias de micronutrientes. Se discuten las opciones para reforzar los enfoques con base a los alimentos para atender la desnutrición.



The authors would like to express gratitude to HarvestPlus and the Government of Spain (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria) for the financial support received for the field work. Furthermore, also the CGIAR Research Program on Roots Tubers and Bananas (CRP-RTB) for supporting staff time of the scientists involved. We would like to thank Elena Taipe from CIP for her help with the artwork.


  1. Aguiar, C., J. Rosenfeld, B. Stevens, S. Thanasombat, and H. Masud. 2007. An Analysis of Malnutrition Programming and Policies in Peru. Paper prepared for the International Economic Development Program, The Gerald R. Ford School of Public Policy and School of Public Health, University of Michigan, pp 1–66.Google Scholar
  2. Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, R. Herrera, L. Hoffmann, J.F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55 (2): 366–378.CrossRefGoogle Scholar
  3. Andre, C.M., S. Legay, C. Lammarino, J. Ziebel, C. Guignard, Y. Larondelle, J.F. Hausman, D. Evers, and L.M. Miranda. 2014. The potato in the human diet: A complex matrix with potential health benefits. Potato Reseach 57 (3–4): 201–214.CrossRefGoogle Scholar
  4. Andre, C.M., D. Evers, J. Ziebel, C. Guignard, J.F. Hausman, M. Bonierbale, T. Zum Felde, and G. Burgos. 2015. In vitro bioaccessibility and bioavailability of Iron from potatoes with varying vitamin C, carotenoid, and phenolic concentrations. Journal of Agricultural and Food Chemistry 63: 9012–9021. Scholar
  5. Antezana, I., A. Fabian, S. Freund, E. Gehrke, G. Glimmann, and S. Seher. 2005. Poverty in Potato Producing Communities in the Central Highlands of Peru, 260. Berlin: Center for Advanced Training in Rural Development (SLE).Google Scholar
  6. AOAC. 1990. Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Arlington: Helrich K. Ed.Google Scholar
  7. Arce, A., H.M. Creed-Kanashiro, M. Scurrah, R. Ccanto, E. Olivera, D. Burra, and S. de Haan. 2016. The challenge of achieving basal energy, iron and zinc provision for home consumption through family farming in the Andes. Agriculture and Food Security 5: 23. Scholar
  8. Arce, A., S. de Haan, D.D. Burra, and R. Ccanto. 2018. Unearthing unevenness of potato seed networks in the high Andes: A comparison of distinct cultivar groups and farmer types following seasons with and without acute stress. Frontiers in Sustainable Food Systems.
  9. Baker, P.T., and M.A. Little. 1976. Man in the Andes: a multidisciplinary study of high-altitude Quechua, 482. Hutchinson Ross Inc..Google Scholar
  10. Berti, P.R., and A.D. Jones. 2013. Biodiversity’s contribution to dietary diversity: magnitude, meaning and measurement. In Diversifying Food and Diets: using agricultural biodiversity to improve nutrition and health, ed. J. Fanzo, D. Hunter, T. Borelli, and F. Mattei, 186–207. New York: Earthscan.Google Scholar
  11. Berti, P.R., A.D. Jones, Y. Cruz, S. Larrea, R. Borja, and S. Sherwood. 2010. Assessment and characterization of the diet of an isolated population in the Bolivian Andes. American Journal of Human Biology 22 (6): 741–749. Scholar
  12. Berti, P.R., C. Fallu, and Y. Cruz Agudo. 2014. A systematic review of the nutritional adequacy of the diet in the Central Andes. Revista Panamericana de Salud Publica 34 (5): 314–323.Google Scholar
  13. Bioversity International. 2017. Mainstreaming agrobiodiversity in sustainable food systems: Scientific foundations for an agrobiodiversity index. Rome: Bioversity International.Google Scholar
  14. Brush, S.B. 2004. Farmers’ Bounty: locating crop diversity in the contemporary world, 352. New Haven: Yale University Press.CrossRefGoogle Scholar
  15. Burgos, G. 2006. Contribución de la papa en la alimentación de niños entre 6 y 36 meses de edad y de sus madres en comunidades rurales de Huancavelica. M.Sc. Thesis. Lima: Universidad Nacional Agraria La Molina (UNALM).Google Scholar
  16. Burgos, G., W. Amoros, M. Morote, J. Stangoulis, and M. Bonierbale. 2007. Iron and zinc concentration of native Andean potato varieties from a human nutrition perspective. Journal of the Science of Food and Agriculture 87: 668–675.CrossRefGoogle Scholar
  17. Burgos, G., S. Aqui, W. Amoros, E. Salas, and M. Bonierbale. 2009a. Ascorbic acid concentrations of native Andean potato varieties as affected by environment, cooking and storage. Journal of Food Composition and Analysis 22 (6): 533–538.CrossRefGoogle Scholar
  18. Burgos, G., S. de Haan, E. Salas, and M. Bonierbale. 2009b. Protein, iron, zinc and calcium concentrations of potatoes following traditional processing as "chuño". Journal of Food Composition and Analysis 22 (6): 617–619. Scholar
  19. Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Critical Reviews in Food Science and Nutrition 49 (10): 823–840.CrossRefGoogle Scholar
  20. Centro Internacional de la Papa (CIP). 2006. Catálogo de Variedades de Papa Nativa de Huancavelica-Perú, 206. Centro Internacional de la Papa (CIP): Lima.Google Scholar
  21. Centro Internacional de la Papa (CIP), Asociación Pataz (AP), and Instituto Nacional de Innovación Agraria (INIA). 2015. Catalog of ancestral potato varieties from Chugay, La Libertad – Peru, 199. Centro Internacional de la Papa (CIP): Lima.Google Scholar
  22. Centro Internacional de la Papa (CIP), Ministerio de Agricultura y Riego (MINAGRI), Grupo Yanapai, Instituto Nacional de Innovación Agraria (INIA). 2017. Catálogo de variedades de papa nativa del sureste del departamento de Junín - Perú, 228. Centro Internacional de la Papa (CIP): Lima.Google Scholar
  23. Christiansen, J. 1977. The utilization of bitter potatoes to improve food production in the high altitude of the tropics. PhD thesis. Cornell University, Ithaca.Google Scholar
  24. De Haan, S., and H. Juarez. 2010. Land use and potato genetic resources in Huancavelica, Central Peru. Journal of Land Use Science 5 (3): 179–196.CrossRefGoogle Scholar
  25. De Haan, S., G. Burgos, J. Arcos, R. Ccanto, M. Scurrah, E. Salas, and M. Bonierbale. 2009. The effect of process and environment on the nutritional value of chuño. In: CIP ed Proceedings of the 15th triennial symposium of the International Society for Tropical Root Crops. Lima: International Society for Tropical Root Crops - Peru Branch, pp 7-23.Google Scholar
  26. De Haan, S., G. Burgos, J. Arcos, R. Ccanto, M. Scurrah, E. Salas, and M. Bonierbale. 2010a. Traditional processing of black and white chuño in the Peruvian Andes: Regional variants and effect on the mineral content of native potato cultivars. Economic Botany 64: 217–234.CrossRefGoogle Scholar
  27. De Haan, S., J. Nuñez, M. Bonierbale, and M. Ghislain. 2010b. Multilevel agrobiodiversity and conservation of Andean potatoes in the Central Andes: Species, morphological, genetic and spatial diversity. Mountain Research and Development 30: 222–231.CrossRefGoogle Scholar
  28. De Haan, S., G. Burgos, R. Ccanto, J. Arcos, M. Scurrah, E. Salas, and M. Bonierbale. 2012. Effect of production environment, genotype and process on the mineral content of native bitter potato cultivars converted into white chuño. Journal of the Science of Food and Agriculture 92: 2098–2105.CrossRefGoogle Scholar
  29. De Valença, A.W., A. Bake, I.D. Brouwer, and K.E. Giller. 2017. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security 12: 8–14.CrossRefGoogle Scholar
  30. Devaux, A., M. Ordinola, A. Hibon, and R. Flores. 2010. El Sector Papa en la Región Andina: diagnostico y elementos para una visión estratégica (Bolivia, Ecuador y Perú). International Potato Center (CIP), Lima.
  31. Dewey, K.G., and K.H. Brown. 2003. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutrition Bulletin 24: 5–28.CrossRefGoogle Scholar
  32. FAO. 1992. Manuel sobre Utilización de los Cultivos Andinos Subexplotados en la Alimentación, 121. Santiago de Chile: Oficina Regional de la FAO para América Latina y el Caribe.Google Scholar
  33. FAO. 1994. Neglected Crops: 1492 from a different perspective, 341. Rome: FAO.Google Scholar
  34. FAO/OMS/UNU. 2004. Human Energy Requirements. Report of joint FAO/WHO/UNU expert consultation. Rome: FAO.Google Scholar
  35. FAO/WHO. 2002. Human Vitamin and Mineral Requirements. Report of joint FAO/WHO expert consultation Bangkok. Rome: FAO.Google Scholar
  36. Gavrilenko, T., O. Antonova, A. Shuvalova, E. Krylova, N. Alpatyeva, D.M. Spooner, and L. Novikova. 2013. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution 60: 1997–2015.CrossRefGoogle Scholar
  37. Grudzińska, M., Z. Czerko, K. Zarzyńska, and M. Borowska-Komenda. 2016. Bioactive compounds in potato tubers: Effects of farming system, cooking method, and flesh color. PLoS One 11 (5): e0153980.CrossRefGoogle Scholar
  38. Hernández-Vásquez, A., and E. Tapia-López. 2017. Chronic malnutrition among children under five in Peru: A spatial analysis of nutritional data, 2010-2016. Revista Española de Salud Pública 91: e201705035.Google Scholar
  39. High Level Panel of Experts on food security and nutrition (HLPE). 2017. Nutrition and Food Systems: a report by the High Level Panel of Experts on food security and nutrition of the Committee on World Food Security, 151. Rome: FAO.Google Scholar
  40. Huamán, Z., and D.M. Spooner. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany 89 (6): 947–965.CrossRefGoogle Scholar
  41. Institute of Medicine (IOM). 2002. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Part 2: Protein and amino acids. Washington D.C.: The National Academies Press.Google Scholar
  42. Instituto de Investigación Nutricional (IIN). 2005. Tabla de Composición de Alimentos. Instituto de Investigación Nutricional (IIN): Lima.Google Scholar
  43. Instituto Nacional de Estadística e Informática (INEI). 2005. Encuesta Demográfica y de Salud Familiar 2000, 228. Lima: Instituto Nacional de Estadística e Informática (INEI).Google Scholar
  44. Instituto Nacional de Estadística e Informática (INEI). 2011. Encuesta Demográfica y de Salud Familiar del año 2010 (ENDES, 2011), 434. Lima: Instituto Nacional de Estadística e Informática (INEI).Google Scholar
  45. Instituto Nacional de Estadística e Informática (INEI). 2018. Encuesta Demográfica y de Salud Familiar - ENDES 2017, 381. Lima: Instituto Nacional de Estadística e Informática (INEI).Google Scholar
  46. Instituto Nacional de Salud (INS). 2009. Tablas Peruanas de Composición de Alimentos. Lima: Ministerio de Salud, Instituto Nacional de Salud.Google Scholar
  47. Instituto Nacional de Salud (INS). 2017. Tablas Peruanas de Composición de Alimentos. Lima: Ministerio de Salud, Instituto Nacional de Salud.Google Scholar
  48. Johns, T. 1990. With Bitter Herbs They Shall Eat It: chemical ecology and the origins of human diet and medicine, 356. Tucson: University of Arizona Press.Google Scholar
  49. Johns, T. 2002. Plant genetic diversity and malnutrition: Practical steps in the development of a global strategy linking plant genetic resource conservation and nutrition. African Journal of Food and Nutritional Sciences 3: 98–100.Google Scholar
  50. Jones, A.D. 2015. The production diversity of subsistence farms in the Bolivian Andes is associated with the quality of child feeding practices as measured by a validated summary feeding index. Public Health Nutrition 18 (2): 329–342. Scholar
  51. Jones, A.D. 2017. On-farm crop species richness is associated with household diet diversity and quality in subsistence- and market-oriented farming households in Malawi. The Journal of Nutrition 147: 86–96.CrossRefGoogle Scholar
  52. Jones, A.D., Y.C. Agudo, L. Galway, J. Bentley, and P. Pinstrup-Andersen. 2012. Heavy agricultural workloads and low crop diversity are strong barriers to improving child feeding practices in the Bolivian Andes. Social Science & Medicine 75 (9): 1673–1684. Scholar
  53. Jones, A.D., H.M. Creed-Kanashiro, K.S. Zimmerer, S. de Haan, M. Carrasco, K. Meza, G.S. Cruz-Garcia, M. Tello, F. Plasencia Amaya, M. Marin, and L. Ganoza. 2018. Farm-level agricultural biodiversity in the Peruvian Andes is associated with greater odds of women achieving a minimally diverse and micronutrient adequate diet. The Journal of Nutrition 148: 1625–1637. Scholar
  54. Kataki, P.K., and S.C. Babu. 2002. Food Systems for Improved Human Nutrition: linking agriculture, nutrition and productivity, 394. Binghamton: Food Products Press.Google Scholar
  55. Kromann, P., F. Valverde, S. Alvarado, R. Vélez, J. Pisuña, B. Potosí, A. Taipe, D. Caballero, A. Cabezas, and A. Devaux. 2017. Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers? Plant and Soil 411 (1–2): 121–138.CrossRefGoogle Scholar
  56. Lachman, J., and K. Hamouz. 2005. Red and purple coloured potatoes as a significant antioxidant source in human nutrition - a review. Plant, Soil and Environment 51 (11): 477–482.CrossRefGoogle Scholar
  57. Lefèvre, I., J. Ziebel, C. Guignard, J.F. Hausman, R.O. Gutiérrez Rosales, M. Bonierbale, L. Hoffmann, R. Schafleitner, and D. Evers. 2012. Drought impacts mineral contents in Andean potato cultivars. Journal of Agronomy and Crop Science 198 (3): 196–206.CrossRefGoogle Scholar
  58. Mayer, E. 2002. The Articulated Peasant: household economies in the Andes, 390. Boulder: Westview Press.Google Scholar
  59. Mazess, R.B., and P.T. Baker. 1964. Diet of Quechua Indians living at high altitude: Nuñoa, Peru. American Journal of Clinical Nutrition 15: 341–351.CrossRefGoogle Scholar
  60. Morlon, P. 1996. Propiedades Familiares y Dispersión de Riesgos: el ejemplo del Altiplano. In: Institut français d’études andines, Centro de Estudios Regionales Andinos Bartolomé de Las Casas eds. Comprender la Agricultura Campesina en los Andes Centrales Perú – Bolivia. Lima: Instituto Frances de Estudios Andinos (IFEA), and Centro de Estudios Regionales Andinos Bartolomé de las Casas (CBC), pp 178–194.Google Scholar
  61. National Research Council (NRC). 1989. Lost crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation, 428. Washington: The National Academies Press. Scholar
  62. Ochoa, C.M. 1999. Las Papas de Sudamerica: Peru, 1036. Centro Internacional de la Papa (CIP): Lima.Google Scholar
  63. Ovchinnikova, A., E. Krylova, T. Gavrilenko, T. Smekalova, M. Zhuk, S. Knapp, and D.M. Spooner. 2011. Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society 165: 107–155.CrossRefGoogle Scholar
  64. Paget, M., W. Amoros, E. Salas, R. Eyzaguirre, P. Alspach, L. Apiolaza, A. Noble, and M. Bonierbale. 2014. Genetic evaluation of micronutrient traits in diploid potato from a base population of Andean landrace cultivars. Crop Science 54 (5): 1949–1959.CrossRefGoogle Scholar
  65. Pillaca-Medina, S., and P.S. Chavez-Dulanto. 2017. How effective and efficient are social programs on food and nutritional security? The case of Peru: A review. Food and Energy Security 6 (4): e120.CrossRefGoogle Scholar
  66. Porras, E., G. Burgos, P. Sosa, and T. Zum Felde (2014). Procedures for sampling and sample preparation of Sweetpotato roots and potato tubers for mineral analysis. International Potato Center (CIP), Lima.
  67. Pradel, W., G. Hareau, L. Quintanilla, and V. Suárez. 2017. Adopción e Impacto de Variedades Mejoradas de Papa en el Perú. International Potato Center (CIP), Lima.
  68. Proyecto Andino de Tecnologías Campesinas (PRATEC). 2001. De la Chacra al Fogón, 156. Lima: PRATEC.Google Scholar
  69. Rose, D., G. Burgos, M. Bonierbale, and G. Thiele. 2008. Understanding the role of potatoes in the Peruvian diet: An approach that combines food composition with household expenditure data. Journal of Food Composition and Analysis 22 (6): 525–532.CrossRefGoogle Scholar
  70. Sarkar, S., H. Banerjee, and K. Sengupta. 2018. Agronomic fortification of zinc in potato production in Indian context: A review. Journal of Applied and Natural Science 10 (3): 1037–1045.CrossRefGoogle Scholar
  71. Schwarzenberg, S.J., M.K. Georgieff, and AAP Committee on Nutrition. 2018. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 141 (2): e20173716.CrossRefGoogle Scholar
  72. Scurrah, M., S. de Haan, E. Olivera, R. Ccanto, H.M. Creed, M. Carrasco, E. Veres, and C. Barahona. 2012. Ricos en agrobiodiversidad pero pobres en nutrición: desafíos de la mejora de la seguridad alimentaria en comunidades Chopcca, Huancavelica. In El Problema Agrario en Debate SEPIA XIV, ed. R.H. Asensio, F. Eguren, and M. Ruiz, 363–407. Lima: SEPIA.Google Scholar
  73. Stifel, C.D., and H. Alderman. 2003. The ‘glass of milk’ subsidy program and malnutrition in Peru, 35. Washington: World Bank.CrossRefGoogle Scholar
  74. Teucher, B., M. Olivares, and H. Cori. 2004. Enhancers of iron absorption: Ascorbic acid and other organic acids. International Journal for Vitamin and Nutrition Research 74: 403–419.CrossRefGoogle Scholar
  75. Thrupp, L.A. 2000. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs 76: 283–297.CrossRefGoogle Scholar
  76. Toledo, A., and B. Burlingame. 2006. Biodiversity and nutrition: A common path toward global food security and sustainable development. Journal of Food Composition and Analysis 19: 477–483.CrossRefGoogle Scholar
  77. Vallejo-Rojas, V., F. Ravera, and M.G. Rivera-Ferre. 2016. Developing an integrated framework to assess Agri-food systems and its application in the Ecuadorian Andes. Regional Environmental Change 16: 2171–2185.CrossRefGoogle Scholar
  78. Villacreses, S., S. Gallegos, P. Chico, and E. Santillán. 2017. Estado alimentario y nutricional de las comunidades originarias y campesinas de la region Central del Ecuador. Revista Cubana de Alimentación y Nutrición 27 (1): 143–166.Google Scholar
  79. Weismantel, M.J. 1992. Food, gender and poverty in the Ecuadorian Andes, 242. Pennsylvania: University of Pennsylvania Press.Google Scholar
  80. Werge, R.W. 1979. Potato processing in the central highlands of Peru. Ecology of Food and Nutrition 7: 229–234.CrossRefGoogle Scholar
  81. World Health Organization (WHO). 2000. Obesity: preventing and managing the global epidemic, 253. Geneva: WHO.Google Scholar
  82. World Health Organization (WHO). 2008. Training Course on Child Growth Assessment, 106. Geneva: WHO Press.Google Scholar
  83. Zimmerer, K.S. 1992. The loss and maintenance of native crops in mountain agriculture. GeoJournal 27 (1): 61–72.CrossRefGoogle Scholar
  84. Zimmerer, K.S. 1996. Changing Fortunes: biodiversity and peasant livelihood in the Peruvian Andes, 308. Berkeley: California Press.Google Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Stef de Haan
    • 1
    • 2
    Email author
  • Gabriela Burgos
    • 1
  • Reyna Liria
    • 3
  • Flor Rodriguez
    • 1
    • 3
  • Hilary M. Creed-Kanashiro
    • 4
  • Merideth Bonierbale
    • 1
  1. 1.International Potato Center (CIP)La MolinaPeru
  2. 2.International Center for Tropical Agriculture (CIAT)Tu LiemVietnam
  3. 3.Instituto Nacional de Innovación Agraria (INIA)La MolinaPeru
  4. 4.Instituto de Investigación Nutricional (IIN)La MolinaPeru

Personalised recommendations