American Journal of Potato Research

, Volume 96, Issue 2, pp 170–176 | Cite as

Beneficial Effect of Potato Consumption on Gut Microbiota and Intestinal Epithelial Health

  • Shima Bibi
  • Duroy A. Navarre
  • Xiaofei Sun
  • Min Du
  • Barbara Rasco
  • Mei-Jun ZhuEmail author
Invited Review


Diet plays an important role in shaping the gut microbiota, which has been called “a separate organ” due to its profound effects on host health. Potato, being a rich source of phytonutrients and bioactive food components, becomes a functional food for improving gut microbiota and gut health. Potato phytonutrients and bioactive food components contribute to gastrointestinal health through direct interactions with the epithelium or indirectly through modulation of the gut microbiota, and microbially derived metabolites, such as short chain fatty acids (SCFAs). In addition, gut microbiota degrade polyphenols and phytonutrients, and increase their bioavailability and thus the functionality of complex macronutrients. This review discusses the potential role of potato in shaping gut microbiota, strengthening intestinal epithelial barrier function, and thereby improving gastrointestinal health.


Gut microbiota Intestinal health Phytochemicals Potato Short chain fatty acids 


La dieta juega un papel importante en la conformación de la microbiota intestinal, a la que se le ha llamado “un órgano separado”, debido a sus profundos efectos en la salud del hospedante. La papa, siendo una fuente rica de fitonutrientes y de componentes alimenticios bioactivos, se convierte en un alimento funcional para el mejoramiento de la microbiota del intestino y su salud. Los fitonutrientes de la papa y los componentes alimenticios bioactivos, contribuyen a la salud gastrointestinal a través de interacciones directas con el epitelio, o indirectamente por vía de la modulación de la microbiota intestinal y metabolitos derivados microbialmente, tales como ácidos grasos de cadena corta (SCFAs). Además, la microbiota intestinal degrada polifenoles y fitonutrientes, y aumenta su biodisponibilidad, y en consecuencia, la funcionalidad de macronutrientes complejos. Esta revisión discute el papel potencial de la papa en la conformación de la microbiota intestinal, reforzando la función de barrera epitelial intestinal, y por ende, mejorando la salud gastrointestinal.



This work was financially supported by USDA National Institute of Food and Agriculture (USDA-NIFA) (2018-67017-27517), Northwest Potato Research Consortium and Washington State University Agricultural Research Center Emerging Research Issues Competitive Grant.


  1. Abreu, M.T. 2010. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nature Reviews. Immunology 10: 131–144.CrossRefGoogle Scholar
  2. Alfa, M.J., D. Strang, P.S. Tappia, M. Graham, G. Van Domselaar, J.D. Forbes, V. Laminman, N. Olson, P. DeGagne, D. Bray, B.L. Murray, B. Dufault, and L.M. Lix. 2018. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clinical Nutrition 37: 797–807.CrossRefGoogle Scholar
  3. Barczynska, R., A. Jurgoński, K. Slizewska, J. Juśkiewicz, and J. Kapusniak. 2017. Effects of potato dextrin on the composition and metabolism of the gut microbiota in rats fed standard and high-fat diets. Journal of Functional Foods 34: 398–407.CrossRefGoogle Scholar
  4. Bibi, S., Y. Kang, G. Yang, and M.J. Zhu. 2016. Grape seed extract improves small intestinal morphology through suppressing inflammation and regulating alkaline phosphatase in IL10-deficient mice. Journal of Functional Foods 20: 245–252.CrossRefGoogle Scholar
  5. Booth, C., and C.S. Potten. 2000. Gut instincts: Thoughts on intestinal epithelial stem cells. The Journal of Clinical Investigation 105: 1493–1499.CrossRefGoogle Scholar
  6. Camilleri, M., K. Madsen, R. Spiller, B. Greenwood-Van Meerveld, and G.N. Verne. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility 24: 503–512.CrossRefGoogle Scholar
  7. Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Critical Reviews in Food Science and Nutrition 49: 823–840.CrossRefGoogle Scholar
  8. Candela, M., F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi. 2008. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: Adhesion properties, competition against enteropathogens and modulation of IL-8 production. International Journal of Food Microbiology 125: 286–292.CrossRefGoogle Scholar
  9. Canny, G., A. Swidsinski, and B.A. McCormick. 2006. Interactions of intestinal epithelial cells with bacteria and immune cells: Methods to characterize microflora and functional consequences. Methods in Molecular Biology 341: 17–35.Google Scholar
  10. Charepalli, V., L. Reddivari, S. Radhakrishnan, R. Vadde, R. Agarwal, and J.K. Vanamala. 2015. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. The Journal of Nutritional Biochemistry 26: 1641–1649.CrossRefGoogle Scholar
  11. Cheng, H., and C.P. Leblond. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. The American Journal of Anatomy 141: 461–479.CrossRefGoogle Scholar
  12. Comalada, M., E. Bailón, O. de Haro, F. Lara-Villoslada, J. Xaus, A. Zarzuelo, and J. Gálvez. 2006. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. Journal of Cancer Research and Clinical Oncology 132: 487–497.CrossRefGoogle Scholar
  13. Crozier, A., D. Del Rio, and M.N. Clifford. 2010. Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine 31: 446–467.CrossRefGoogle Scholar
  14. Del Rio, D., G. Borges, and A. Crozier. 2010. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. The British Journal of Nutrition 104 (Suppl 3): S67–S90.Google Scholar
  15. Dicksved, J., J. Halfvarson, M. Rosenquist, G. Jarnerot, C. Tysk, J. Apajalahti, L. Engstrand, and J.K. Jansson. 2008. Molecular analysis of the gut microbiota of identical twins with Crohn's disease. The ISME Journal 2: 716–727.CrossRefGoogle Scholar
  16. Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson, and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.CrossRefGoogle Scholar
  17. Eichhorn, S., and P. Winterhalter. 2005. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Research International 38: 943–948.CrossRefGoogle Scholar
  18. El Kaoutari, A., F. Armougom, J.I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews. Microbiology 11: 497–504.CrossRefGoogle Scholar
  19. Englyst, H.N., S. Kingman, and J. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46: S33–S50.Google Scholar
  20. Ezekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. Beneficial phytochemicals in potato — A review. Food Research International 50: 487–496.CrossRefGoogle Scholar
  21. Frank, D.N., A.L. St Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, and N.R. Pace. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America 104: 13780–13785.CrossRefGoogle Scholar
  22. Fukuda, S., H. Toh, K. Hase, K. Oshima, Y. Nakanishi, K. Yoshimura, T. Tobe, J.M. Clarke, D.L. Topping, T. Suzuki, T.D. Taylor, K. Itoh, J. Kikuchi, H. Morita, M. Hattori, and H. Ohno. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543–547.CrossRefGoogle Scholar
  23. Furusawa, Y., Y. Obata, S. Fukuda, T.A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, and T. Kato. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446–450.CrossRefGoogle Scholar
  24. Graf, D., R. Di Cagno, F. Fåk, H.J. Flint, M. Nyman, M. Saarela, and B. Watzl. 2015. Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease 26.
  25. Groschwitz, K.R., and S.P. Hogan. 2009. Intestinal barrier function: Molecular regulation and disease pathogenesis. The Journal of Allergy and Clinical Immunology 124: 3–20.CrossRefGoogle Scholar
  26. Haenen, D., J. Zhang, C. Souza da Silva, G. Bosch, I.M. van der Meer, J. van Arkel, J.J. van den Borne, O. Perez Gutierrez, H. Smidt, B. Kemp, M. Muller, and G.J. Hooiveld. 2013. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. The Journal of Nutrition 143: 274–283.CrossRefGoogle Scholar
  27. Han, K.H., N. Hayashi, N. Hashimoto, K. Shimada, M. Sekikawa, T. Noda, and M. Fukushima. 2008. Feeding potato flakes affects cecal short-chain fatty acids, microflora and fecal bile acids in rats. Annals of Nutrition & Metabolism 52: 1–7.CrossRefGoogle Scholar
  28. Hayashi, K. 2008. Induction of apoptosis in cultured human stomach cancer cells bypotato anthocyanins and its inhibitory effects on growth of stomach cancer in mice.Google Scholar
  29. Heath, J.K. 2010. Transcriptional networks and signaling pathways that govern vertebrate intestinal development. Current Topics in Developmental Biology 90: 159–192.CrossRefGoogle Scholar
  30. Hill, M. 1997. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention 6: S43–S45.CrossRefGoogle Scholar
  31. Hilsden, R.J., J.B. Meddings, J. Hardin, D.G. Gall, and L.R. Sutherland. 1999. Intestinal permeability and postheparin plasma diamine oxidase activity in the prediction of Crohn's disease relapse. Inflammatory Bowel Diseases 5: 85–91.CrossRefGoogle Scholar
  32. Hirayama, K., K. Uetsuka, Y. Kuwabara, M. Tamura, and K. Itoh. 2007. Vitamin K deficiency of germfree mice caused by feeding standard purified diet sterilized by gamma-irradiation. Experimental Animals 56: 273–278.CrossRefGoogle Scholar
  33. Hooper, L.V., M.H. Wong, A. Thelin, L. Hansson, P.G. Falk, and J.I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884.CrossRefGoogle Scholar
  34. Jang, S., J. Sun, P. Chen, S. Lakshman, A. Molokin, J.M. Harnly, B.T. Vinyard, J.F. Urban Jr., C.D. Davis, and G. Solano-Aguilar. 2016. Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. The Journal of Nutrition 146: 673–680.CrossRefGoogle Scholar
  35. Jansen, G., W. Flamme, K. Schüler, and M. Vandrey. 2001. Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Research 44: 137–146.CrossRefGoogle Scholar
  36. Kau, A.L., P.P. Ahern, N.W. Griffin, A.L. Goodman, and J.I. Gordon. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336.CrossRefGoogle Scholar
  37. Kelly, D., J.I. Campbell, T.P. King, G. Grant, E.A. Jansson, A.G. Coutts, S. Pettersson, and S. Conway. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nature Immunology 5: 104–112.CrossRefGoogle Scholar
  38. Kelly, C.J., L. Zheng, E.L. Campbell, B. Saeedi, C.C. Scholz, A.J. Bayless, K.E. Wilson, L.E. Glover, D.J. Kominsky, A. Magnuson, T.L. Weir, S.F. Ehrentraut, C. Pickel, K.A. Kuhn, J.M. Lanis, V. Nguyen, C.T. Taylor, and S.P. Colgan. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe 17: 662–671.CrossRefGoogle Scholar
  39. Lazarov, K., and M.J. Werman. 1996. Hypocholesterolaemic effect of potato peels as a dietary fibre source. Medical Science Research 24: 581–582.Google Scholar
  40. Leo, L., A. Leone, C. Longo, D.A. Lombardi, F. Raimo, and G. Zacheo. 2008. Antioxidant compounds and antioxidant activity in "early potatoes". Journal of Agricultural and Food Chemistry 56: 4154–4163.CrossRefGoogle Scholar
  41. Ley, R.E., P.J. Turnbaugh, S. Klein, and J.I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444: 1022–1023.CrossRefGoogle Scholar
  42. Louis, P., P. Young, G. Holtrop, and H.J. Flint. 2010. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:Acetate CoA-transferase gene. Environmental Microbiology 12: 304–314.CrossRefGoogle Scholar
  43. Lozupone, C.A., J.I. Stombaugh, J.I. Gordon, J.K. Jansson, and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230.CrossRefGoogle Scholar
  44. Lupton, J.R. 2004. Microbial degradation products influence colon cancer risk: The butyrate controversy. The Journal of Nutrition 134: 479–482.CrossRefGoogle Scholar
  45. Macfarlane, G.T., and H.N. Englyst. 1986. Starch utilization by the human large intestinal microflora. The Journal of Applied Bacteriology 60: 195–201.CrossRefGoogle Scholar
  46. Madiwale, G.P., L. Reddivari, D.G. Holm, and J. Vanamala. 2011. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. Journal of Agricultural and Food Chemistry 59: 8155–8166.CrossRefGoogle Scholar
  47. Madiwale, G.P., L. Reddivari, M. Stone, D.G. Holm, and J. Vanamala. 2012. Combined effects of storage and processing on the bioactive compounds and pro-apoptotic properties of color-fleshed potatoes in human Colon Cancer cells. Journal of Agricultural and Food Chemistry 60: 11088–11096.CrossRefGoogle Scholar
  48. Maloy, K.J., and F. Powrie. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474: 298–306.CrossRefGoogle Scholar
  49. Mattila, P., and J. Hellström. 2007. Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis 20: 152–160.CrossRefGoogle Scholar
  50. Miene, C., A. Weise, and M. Glei. 2011. Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97). Nutrition and Cancer 63: 653–662.CrossRefGoogle Scholar
  51. Nara, K., T. Miyoshi, T. Honma, and H. Koga. 2006. Antioxidative activity of bound-form phenolics in potato peel. Bioscience, Biotechnology, and Biochemistry 70: 1489–1491.CrossRefGoogle Scholar
  52. Navarre, D.A., S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chemistry 127: 34–41.CrossRefGoogle Scholar
  53. Novellasdemunt, L., P. Antas, and V.S. Li. 2015. Targeting Wnt signaling in colorectal cancer. A review in the theme: Cell signaling: Proteins, pathways and mechanisms. American Journal of Physiology. Cell Physiology 309: C511–C521.CrossRefGoogle Scholar
  54. Olszak, T., D. An, S. Zeissig, M.P. Vera, J. Richter, A. Franke, J.N. Glickman, R. Siebert, R.M. Baron, D.L. Kasper, and R.S. Blumberg. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489–493.CrossRefGoogle Scholar
  55. Panasevich, M.R., J.M. Allen, M.A. Wallig, J.A. Woods, and R.N. Dilger. 2015a. Moderately fermentable potato fiber attenuates signs and inflammation associated with experimental colitis in mice. The Journal of Nutrition 145: 2781–2788.CrossRefGoogle Scholar
  56. Panasevich, M.R., K.R. Kerr, R.N. Dilger, G.C. Fahey Jr., L. Guerin-Deremaux, G.L. Lynch, D. Wils, J.S. Suchodolski, J.M. Steer, S.E. Dowd, and K.S. Swanson. 2015b. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. The British Journal of Nutrition 113: 125–133.CrossRefGoogle Scholar
  57. Park, J.-h., T. Kotani, T. Konno, J. Setiawan, Y. Kitamura, S. Imada, Y. Usui, N. Hatano, M. Shinohara, Y. Saito, Y. Murata, and T. Matozaki. 2016. Promotion of intestinal epithelial cell turnover by commensal Bacteria: Role of short-chain fatty acids. PLoS One 11: e0156334.CrossRefGoogle Scholar
  58. Pastuszewska, B., M. Taciak, A. Tusnio, T. Misztal, and A. Ochtabinska. 2010. Physiological effects of long-term feeding diets supplemented with potato fibre or cellulose to adult rats. Archives of Animal Nutrition 64: 155–169.CrossRefGoogle Scholar
  59. Paturi, G., T. Nyanhanda, C.A. Butts, T.D. Herath, J.A. Monro, and J. Ansell. 2012. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat. Journal of Food Science 77: H216–H223.CrossRefGoogle Scholar
  60. Peng, L., Z.R. Li, R.S. Green, I.R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition 139: 1619–1625.CrossRefGoogle Scholar
  61. Queipo-Ortuno, M.I., M. Boto-Ordonez, M. Murri, J.M. Gomez-Zumaquero, M. Clemente-Postigo, R. Estruch, F. Cardona Diaz, C. Andres-Lacueva, and F.J. Tinahones. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. The American Journal of Clinical Nutrition 95: 1323–1334.CrossRefGoogle Scholar
  62. Reddivari, L., A.L. Hale, and J.C. Miller. 2007. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. American Journal of Potato Research 84: 275–282.CrossRefGoogle Scholar
  63. Reddivari, L., S.W. Kim, S. Radhakrishnan, Y. Peiying, K. Robert, and J. Vanamala. 2013. Purple-fleshed potatoes suppress colon-systemic oxidative stress/inflammatory markers via alternations in the gut bacterial signature. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 27: 1056–1059.Google Scholar
  64. Reichardt, N., S.H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K.P. Scott, H.J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 8: 1323–1335.CrossRefGoogle Scholar
  65. Reyes, L.F., Miller, J.C., Cisneros-Zevallos, L. 2005. Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato (Solanum tuberosum L.) genotypes. American Journal of Potato Research 82: 271–277.Google Scholar
  66. Roeselers, G., M. Ponomarenko, S. Lukovac, and H.M. Wortelboer. 2013. Ex vivo systems to study host-microbiota interactions in the gastrointestinal tract. Best Practice & Research. Clinical Gastroenterology 27: 101–113.CrossRefGoogle Scholar
  67. Sartor, R.B. 2011. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunology 4: 127–132.CrossRefGoogle Scholar
  68. Sekirov, I., S.L. Russell, L.C.M. Antunes, and B.B. Finlay. 2010. Gut microbiota in health and disease. Physiological Reviews 90: 859–904.CrossRefGoogle Scholar
  69. Slavin, J.L. 2008. Position of the American dietetic association: Health implications of dietary fiber. Journal of the American Dietetic Association 108: 1716–1731.CrossRefGoogle Scholar
  70. Sonnenburg, J.L., J. Xu, D.D. Leip, C.H. Chen, B.P. Westover, J. Weatherford, J.D. Buhler, and J.I. Gordon. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307: 1955–1959.CrossRefGoogle Scholar
  71. Stappenbeck, T.S., L.V. Hooper, and J.I. Gordon. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences of the United States of America 99: 15451–15455.CrossRefGoogle Scholar
  72. Sun, X., and M.J. Zhu. 2018. Butyrate inhibits indices of colorectal carcinogenesis via enhancing alpha-ketoglutarate-dependent DNA demethylation of mismatch repair genes. Molecular Nutrition & Food Research: e1700932.Google Scholar
  73. Sun, Y., Y. Su, and W. Zhu. 2016. Microbiome-metabolome responses in the cecum and Colon of pig to a high resistant starch diet. Frontiers in Microbiology 7: 779.Google Scholar
  74. Sun, X., Q. Yang, C.J. Rogers, M. Du, and M.J. Zhu. 2017. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death and Differentiation 24: 819–831.CrossRefGoogle Scholar
  75. Sun, X., M. Du, D.A. Navarre, and M.J. Zhu. 2018. Purple potato extract promotes intestinal epithelial differentiation and barrier function by activating AMP-activated protein kinase. Molecular Nutrition & Food Research 62: 1700536.CrossRefGoogle Scholar
  76. Thomassen, L.V., L.K. Vigsnaes, T.R. Licht, J.D. Mikkelsen, and A.S. Meyer. 2011. Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment. Applied Microbiology and Biotechnology 90: 873–884.CrossRefGoogle Scholar
  77. Turnbaugh, P.J., F. Backhed, L. Fulton, and J.I. Gordon. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe 3: 213–223.CrossRefGoogle Scholar
  78. Tzounis, X., A. Rodriguez-Mateos, J. Vulevic, G.R. Gibson, C. Kwik-Uribe, and J.P. Spencer. 2011. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition 93: 62–72.CrossRefGoogle Scholar
  79. Umu, O.C., J.A. Frank, J.U. Fangel, M. Oostindjer, C.S. da Silva, E.J. Bolhuis, G. Bosch, W.G. Willats, P.B. Pope, and D.B. Diep. 2015. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 3: 16.CrossRefGoogle Scholar
  80. Vaarala, O. 2012. Is the origin of type 1 diabetes in the gut? Immunology and Cell Biology 90: 271–276.CrossRefGoogle Scholar
  81. Van der Sluis, M., B.A. De Koning, A.C. De Bruijn, A. Velcich, J.P. Meijerink, J.B. Van Goudoever, H.A. Buller, J. Dekker, I. Van Seuningen, I.B. Renes, and A.W. Einerhand. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131: 117–129.CrossRefGoogle Scholar
  82. Velcich, A., W. Yang, J. Heyer, A. Fragale, C. Nicholas, S. Viani, R. Kucherlapati, M. Lipkin, K. Yang, and L. Augenlicht. 2002. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–1729.CrossRefGoogle Scholar
  83. Verzelloni, E., C. Pellacani, D. Tagliazucchi, S. Tagliaferri, L. Calani, L.G. Costa, F. Brighenti, G. Borges, A. Crozier, A. Conte, and D. Del Rio. 2011. Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Molecular Nutrition & Food Research 55 (Suppl 1): S35–S43.CrossRefGoogle Scholar
  84. Viladomiu, M., R. Hontecillas, L. Yuan, P. Lu, and J. Bassaganya-Riera. 2013. Nutritional protective mechanisms against gut inflammation. The Journal of Nutritional Biochemistry 24: 929–939.CrossRefGoogle Scholar
  85. Wang, D., M.L. Wise, F. Li, and M. Dey. 2012. Phytochemicals attenuating aberrant activation of beta-catenin in cancer cells. PLoS One 7: e50508.CrossRefGoogle Scholar
  86. Wang, H., Y. Xue, H. Zhang, Y. Huang, G. Yang, M. Du, and M.J. Zhu. 2013. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Molecular Nutrition & Food Research 57: 2253–2257.CrossRefGoogle Scholar
  87. Wang, S., N. Moustaid-Moussa, L. Chen, H. Mo, A. Shastri, R. Su, P. Bapat, I. Kwun, and C.L. Shen. 2014. Novel insights of dietary polyphenols and obesity. The Journal of Nutritional Biochemistry 25: 1–18.CrossRefGoogle Scholar
  88. Wong, J.M., R. de Souza, C.W. Kendall, A. Emam, and D.J. Jenkins. 2006. Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40: 235–243.CrossRefGoogle Scholar
  89. Wu, X., A.C. Pfalzer, G.Y. Koh, S. Tang, J.W. Crott, M.J. Thomas, M. Meydani, and J.B. Mason. 2017. Curcumin and Salsalate suppresses colonic inflammation and Procarcinogenic signaling in high-fat-fed, Azoxymethane-treated mice. Journal of Agricultural and Food Chemistry 65: 7200–7209.CrossRefGoogle Scholar
  90. Xenoulis, P.G., B. Palculict, K. Allenspach, J.M. Steiner, A.M. Van House, and J.S. Suchodolski. 2008. Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiology Ecology 66: 579–589.CrossRefGoogle Scholar
  91. Xiao, J., and P. Hogger. 2015. Stability of dietary polyphenols under the cell culture conditions: Avoiding erroneous conclusions. Journal of Agricultural and Food Chemistry 63: 1547–1557.CrossRefGoogle Scholar
  92. Yang, G., Y. Xue, H. Zhang, M. Du, and M.J. Zhu. 2015. Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice. The British Journal of Nutrition 114: 15–23.CrossRefGoogle Scholar
  93. Yu, L.C. 2009. The epithelial gatekeeper against food allergy. Pediatrics and Neonatology 50: 247–254.CrossRefGoogle Scholar
  94. Zhang, X., Y. Yang, Z. Wu, and P. Weng. 2016. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. Journal of Agricultural and Food Chemistry 64: 2582–2590.CrossRefGoogle Scholar
  95. Zheng, L., C.J. Kelly, K.D. Battista, R. Schaefer, J.M. Lanis, E.E. Alexeev, R.X. Wang, J.C. Onyiah, D.J. Kominsky, and S.P. Colgan. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. Journal of Immunology 199: 2976–2984.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.School of Food ScienceWashington State UniversityPullmanUSA
  2. 2.USDA-Agricultural Research ServiceProsserUSA
  3. 3.Department of Animal ScienceWashington State UniversityPullmanUSA

Personalised recommendations