Advertisement

Potato Vitamins, Minerals and Phytonutrients from a Plant Biology Perspective

  • Duroy A. NavarreEmail author
  • Charles R. Brown
  • Vidyasagar R. Sathuvalli
Invited Review
  • 10 Downloads

Abstract

As the link between diet and health becomes increasingly characterized, the nutritional value of foods is being increasingly prioritized by the public. This can create both challenges and opportunities for plant breeding programs and food processing companies. This review will focus on the nutritional composition of potatoes and examine the role potatoes can play in providing global food security. The amounts of vitamins, minerals and phytonutrients in potatoes vary tremendously depending on the cultivar and are also influenced by environment. Potatoes are well known to be good sources of potassium and vitamin C. They also contain an array of other bioactives, including high amounts of phenylpropanoids, compounds known to have diverse health-promoting roles in humans. While potatoes already contain generous amounts of various phytonutrients, by taking advantage of the available extensive germplasm resources, future cultivars can be further improved and provide additional options that help satisfy rapidly evolving consumer preferences and changing market demands.

Keywords

Potatoes Health Diet Nutrition Phenylpropanoids Food security Potassium Carotenoids 

Resumen

A medida que la asociación entre la dieta y la salud se vuelve cada vez más caracterizada, se incrementa la prioridad del valor nutrimental de los alimentos por el público. Esto puede crear tanto retos como oportunidades para programas de mejoramiento genético y para compañías procesadoras de alimentos. Esta revisión se enfocará en la composición nutricional de las papas y examina el papel que éstas pueden jugar en proporcionar seguridad alimentaria global. Las cantidades de vitaminas, minerales y fitonutrientes en la papa varían tremendamente, dependiendo de la variedad y también están influenciadas por el medio ambiente. Es bien sabido que las papas son buenas fuentes de potasio y vitamina C. También contienen un arreglo de otros bioactivos, incluyendo grandes cantidades de fenilpropanoides, compuestos de los que se conoce que tienen diversas funciones promotoras de la salud en humanos. Mientras que la papa ya contiene generosas cantidades de varios fitonutrientes, tomando la ventaja de las extensas fuentes de germoplasma, las variedades del futuro pueden ser mejoradas aun más y proporcionar opciones adicionales, que ayuden a satisfacer rápidamente las preferencias evolutivas del consumidor y las cambiantes demandas del mercado.

Notes

Acknowledgements

We thank Dr. John Bamberg, USDA-ARS, for providing the photos in Figs. 2a and 3.

References

  1. Abdel-Aal, E.-S., H. Akhtar, K. Zaheer, and R. Ali. 2013. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5: 1169–1185.CrossRefPubMedCentralGoogle Scholar
  2. Ah-Hen, K., C. Fuenzalida, S. Hess, A. Contreras, A. Vega-Gálvez, and R. Lemus-Mondaca. 2012. Antioxidant capacity and total phenolic compounds of twelve selected potato landrace clones grown in southern Chile. Chilean Journal of Agricultural Research 72: 3–9.CrossRefGoogle Scholar
  3. Alfthan, G., M.S. Laurinen, L.M. Valsta, T. Pastinen, and A. Aro. 2003. Folate intake, plasma folate and homocysteine status in a random Finnish population. European Journal of Clinical Nutrition 57: 81–88.CrossRefPubMedGoogle Scholar
  4. Allison, M.F., J.H. Fowler, and E.J. Allen. 2002. Factors affecting the magnesium nutrition of potatoes (Solanum tuberosum). The Journal of Agricultural Science 137: 397–409.Google Scholar
  5. Amado, I.R., D. Franco, M. Sánchez, C. Zapata, and J.A. Vázquez. 2014. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry 165: 290–299.CrossRefPubMedGoogle Scholar
  6. Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, R. Herrera Mdel, L. Hoffmann, J.F. Hausman, Y. Larondelle, and D. Evers. 2007a. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55: 366–378.CrossRefPubMedGoogle Scholar
  7. Andre, C.M., M. Oufir, C. Guignard, L. Hoffmann, J.F. Hausman, D. Evers, and Y. Larondelle. 2007b. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of beta-carotene, alpha-tocopherol, chlorogenic acid, and petanin. Journal of Agricultural and Food Chemistry 55: 10839–10849.CrossRefPubMedGoogle Scholar
  8. Augustin, J., S.R. Johnson, C. Teitzel, R.H. True, J.M. Hogan, R.B. Toma, R.L. Shaw, and R.M. Deutsch. 1978. Changes in the nutrient composition of potatoes during home preparation: II. Vitamins. American Potato Journal 55: 653–662.CrossRefGoogle Scholar
  9. Ayoub, H.M., M.R. McDonald, J.A. Sullivan, R. Tsao, M. Platt, J. Simpson, and K.A. Meckling. 2017. The effect of anthocyanin-rich purple vegetable diets on metabolic syndrome in obese Zucker rats. Journal of Medicinal Food 20: 1240–1249.CrossRefPubMedGoogle Scholar
  10. Ayvaz, H., A. Bozdogan, M.M. Giusti, M. Mortas, R. Gomez, and L.E. Rodriguez-Saona. 2016. Improving the screening of potato breeding lines for specific nutritional traits using portable mid-infrared spectroscopy and multivariate analysis. Food Chemistry 211: 374–382.CrossRefPubMedGoogle Scholar
  11. Bamberg, J.B., M. Martin, and J.P. Palta. 2008. Variation in Solanum species’ tuber potassium accumulation and its implications for human nutrition. American Journal of Potato Research 85: 2.CrossRefGoogle Scholar
  12. Bassoli, B.K., P. Cassolla, G.R. Borba-Murad, J. Constantin, C.L. Salgueiro-Pagadigorria, R.B. Bazotte, R.S. da Silva, and H.M. de Souza. 2008. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function 26: 320–328.CrossRefPubMedGoogle Scholar
  13. Bethke, P.C., D.A. Halterman, and S. Jansky. 2017. Are we getting better at using wild potato species in light of new tools? Crop Science 57: 1241.CrossRefGoogle Scholar
  14. Blancquaert, D., S. Storozhenko, K. Loizeau, H. De Steur, V. De Brouwer, J. Viaene, S. Ravanel, F. Rebeille, W. Lambert, and D. Van Der Straeten. 2010. Folates and folic acid: From fundamental research toward sustainable health. Critical Reviews in Plant Sciences 29: 14–35.CrossRefGoogle Scholar
  15. Blauer, J.N., M.G.N. Kumar, L.O. Knowles, A. Dingra, and N.R. Knowles. 2013. Changes in ascorbate and associated gene expression during development and storage of potato tubers. Postharvest Biology and Technology 78: 76–91.CrossRefGoogle Scholar
  16. Bolca, S., T. Van de Wiele, and S. Possemiers. 2013. Gut metabotypes govern health effects of dietary polyphenols. Current Opinion in Biotechnology 24: 220–225.CrossRefPubMedGoogle Scholar
  17. Brevik, A., S.E. Vollset, G.S. Tell, H. Refsum, P.M. Ueland, E.B. Loeken, C.A. Drevon, and L.F. Andersen. 2005. Plasma concentration of folate as a biomarker for the intake of fruit and vegetables: The Hordaland homocysteine study. The American Journal of Clinical Nutrition 81: 434–439.CrossRefPubMedGoogle Scholar
  18. Brown, C.R. 2005. Antioxidants in potato. American Journal of Potato Research 82: 163–172.CrossRefGoogle Scholar
  19. Brown, C.R. 2008. Breeding for phytonutrient enhancement of potato. American Journal of Potato Research 85: 298–307.CrossRefGoogle Scholar
  20. Brown, C.R., C.G. Edwards, C.P. Yang, and B.B. Dean. 1993. Orange flesh trait in potato: Inheritance and carotenoid content. Journal of the American Society for Horticultural Science 118: 145–150.CrossRefGoogle Scholar
  21. Brown, C., T. Kim, Z. Ganga, K. Haynes, D. De Jong, M. Jahn, I. Paran, and W. De Jong. 2006. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. American Journal of Potato Research 83: 365–372.CrossRefGoogle Scholar
  22. Brown, C.R., D. Culley, M. Bonierbale, and W. Amorós. 2007. Anthocyanin, carotenoid content, and antioxidant values in native south American potato cultivars. HortScience 42: 1733–1736.CrossRefGoogle Scholar
  23. Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2010. Stability and broad-sense heritability of mineral content in potato: Iron. American Journal of Potato Research 87: 390–396.CrossRefGoogle Scholar
  24. Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller. 2012. Stability and broad-sense heritability of mineral content in potato: Calcium and magnesium. American Journal of Potato Research 89: 255–261.CrossRefGoogle Scholar
  25. Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, and R.G. Novy. 2013. Stability and broad-sense heritability of mineral content in potato: Potassium and phosphorus. American Journal of Potato Research 90: 516–523.CrossRefGoogle Scholar
  26. Brussaard, J.H., M.R. Lowik, H. van den Berg, H.A. Brants, and R.A. Goldbohm. 1997. Folate intake and status among adults in the Netherlands. European Journal of Clinical Nutrition 51 (Suppl 3): S46–S50.PubMedGoogle Scholar
  27. Burgos, G., W. Amoros, E. Salas, L. Munoa, P. Sosa, C. Diaz, and M. Bonierbale. 2012. Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chemistry 133: 1131–1137.CrossRefGoogle Scholar
  28. Burmeister, A., S. Bondiek, L. Apel, C. Kühne, S. Hillebrand, and P. Fleischmann. 2011. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. Journal of Food Composition and Analysis 24: 865–872.CrossRefGoogle Scholar
  29. Burrowes, J.D., and N.J. Ramer. 2008. Changes in the potassium content of different potato varieties after cooking. Journal of Renal Nutrition 18: 249.CrossRefGoogle Scholar
  30. Caballero, B. 2007. The global epidemic of obesity: An overview. Epidemiologic Reviews 29: 1–5.CrossRefPubMedGoogle Scholar
  31. Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Critical Reviews in Food Science and Nutrition 49: 823–840.CrossRefPubMedGoogle Scholar
  32. Campbell, R., S.D. Pont, J.A. Morris, G. McKenzie, S.K. Sharma, P.E. Hedley, G. Ramsay, G.J. Bryan, and M.A. Taylor. 2014. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theoretical and Applied Genetics 127: 1917–1933.CrossRefPubMedGoogle Scholar
  33. Cardona, F., C. Andrés-Lacueva, S. Tulipani, F.J. Tinahones, and M.I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24: 1415–1422.CrossRefPubMedGoogle Scholar
  34. Casanas, R., M. Gonzalez, E. Rodriguez, A. Marrero, and C. Diaz. 2002. Chemometric studies of chemical compounds in five cultivars of potatoes from Tenerife. Journal of Agricultural and Food Chemistry 50: 2076–2082.CrossRefPubMedGoogle Scholar
  35. Charepalli, V., L. Reddivari, S. Radhakrishnan, R. Vadde, R. Agarwal, and J.K. Vanamala. 2015. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. The Journal of Nutritional Biochemistry 26: 1641–1649.CrossRefPubMedGoogle Scholar
  36. Chitchumroonchokchai, C., G. Diretto, B. Parisi, G. Giuliano, and M.L. Failla. 2017. Potential of golden potatoes to improve vitamin a and vitamin E status in developing countries. PLoS One 12: e0187102.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cho, K., K.-S. Cho, H.-B. Sohn, I.J. Ha, S.-Y. Hong, H. Lee, Y.-M. Kim, and M.H. Nam. 2016. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. Journal of Experimental Botany 67: 1519–1533.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chucair, A.J., N.P. Rotstein, J.P. Sangiovanni, A. During, E.Y. Chew, and L.E. Politi. 2007. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: Relation with docosahexaenoic acid. Investigative Ophthalmology & Visual Science 48: 5168–5177.CrossRefGoogle Scholar
  39. Chun, O.K., D.O. Kim, N. Smith, D. Schroeder, J.T. Han, and C.Y. Lee. 2005. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of the Science of Food and Agriculture 85: 1715–1724.CrossRefGoogle Scholar
  40. Cook, J.D., and M.B. Reddy. 2001. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. The American Journal of Clinical Nutrition 73: 93–98.CrossRefPubMedGoogle Scholar
  41. Dale, M.F.B., D.W. Griffiths, and D.T. Todd. 2003. Effects of genotype, environment, and postharvest storage on the total ascorbate content of potato (Solanum tuberosum) tubers. Journal of Agricultural and Food Chemistry 51: 244–248.CrossRefPubMedGoogle Scholar
  42. Deng, Y., and S. Lu. 2017. Biosynthesis and regulation of Phenylpropanoids in plants. Critical Reviews in Plant Sciences 36: 257–290.CrossRefGoogle Scholar
  43. Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Potato Research 57: 185–199.CrossRefGoogle Scholar
  44. Dibaba, D.T., P. Xun, and K. He. 2014. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: Meta-analysis and systematic review. European Journal of Clinical Nutrition 68: 510–516.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Diretto, G., S. Al-Babili, R. Tavazza, V. Papacchioli, P. Beyer, and G. Giuliano. 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2: e350.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dixon, R.A., and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Douches, D., K. Schroeter, K. Ludlam, and K. Hicks. 1989. Allelic diversity among the Solanum species, Section Petota. American Potato Journal 66: 517.Google Scholar
  48. Douches, D.S., D. Maas, K. Jastrzebski, and R.W. Chase. 1996. Assessment of potato breeding progress in the USA over the last century. Crop Science 36: 1544–1552.CrossRefGoogle Scholar
  49. Drewnowski, A., and P. Eichelsdoerfer. 2010. Can low-income Americans afford a healthy diet? Nutrition Today 44: 246–249.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Drewnowski, A., and C.D. Rehm. 2013. Vegetable cost metrics show that potatoes and beans provide most nutrients per penny. PLoS One 8: e63277.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ducreux, L.J.M., W.L. Morris, P.E. Hedley, T. Shepherd, H.V. Davies, S. Millam, and M.A. Taylor. 2005. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Journal of Experimental Botany 56: 81–89.PubMedGoogle Scholar
  52. Eknoyan, G. 2006. A history of obesity, or how what was good became ugly and then bad. Advances in Chronic Kidney Disease 13: 421–427.CrossRefPubMedGoogle Scholar
  53. Espín, J.C., A. González-Sarrías, and F.A. Tomás-Barberán. 2017. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology 139: 82–93.CrossRefPubMedGoogle Scholar
  54. Ezekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. Beneficial phytochemicals in potato — A review. Food Research International 50: 487–496.CrossRefGoogle Scholar
  55. Fernandez-Orozco, R.B., L. Gallardo-Guerrero, and D. Hornero-Mendez. 2013. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: Accumulation of carotenoids mediated by xanthophyll esterification. Food Chemistry 141: 2864–2872.CrossRefPubMedGoogle Scholar
  56. Filler Hayut, S., C. Melamed Bessudo, and A.A. Levy. 2017. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications 8: 15605.CrossRefPubMedPubMedCentralGoogle Scholar
  57. FRAC. 2017. Why low-income and food-insecure people are vulnerable to poor nutrition and obesity. Food Research and Action Center.Google Scholar
  58. Franco, D., M. Pateiro, I. Rodríguez Amado, M. López Pedrouso, C. Zapata, J.A. Vázquez, and J.M. Lorenzo. 2016. Antioxidant ability of potato (Solanum tuberosum) peel extracts to inhibit soybean oil oxidation. European Journal of Lipid Science and Technology 118: 1891–1902.CrossRefGoogle Scholar
  59. Fraser, P.D., and P.M. Bramley. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 43: 228–265.CrossRefPubMedGoogle Scholar
  60. Gammone, M.A., G. Riccioni and N. D’Orazio. 2015. Carotenoids: Potential allies of cardiovascular health? Food & Nutrition Research 59.Google Scholar
  61. GBDC. 2017. Health effects of overweight and obesity in 195 countries over 25 years. The New England Journal of Medicine 377: 13–27.CrossRefGoogle Scholar
  62. GBDS. 2017. Global Burden of Disease Study. Lancet 390: http://www.thelancet.com/gbd.
  63. Georges, F., and H. Ray. 2017. Genome editing of crops: A renewed opportunity for food security. GM Crops & Food 8: 1–12.CrossRefGoogle Scholar
  64. Gibson, S., and A.C. Kurilich. 2013. The nutritional value of potatoes and potato products in the UK diet. Nutrition Bulletin 38: 389–399.CrossRefGoogle Scholar
  65. Goyer, A., and K.G. Haynes. 2011. Vitamin B1 content in potato: Effect of genotype, tuber enlargement, and storage, and estimation of stability and broad-sense heritability. American Journal of Potato Research 88: 374–385.CrossRefGoogle Scholar
  66. Goyer, A., and D.A. Navarre. 2007. Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and a microbiological assay. Journal of Agricultural and Food Chemistry 55: 3523–3528.CrossRefPubMedGoogle Scholar
  67. Goyer, A., and D.A. Navarre. 2009. Folate is higher in developmentally younger potato tubers. Journal of the Science of Food and Agriculture 89: 579–583.CrossRefGoogle Scholar
  68. Goyer, A., and K. Sweek. 2011. Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. Journal of Agricultural and Food Chemistry 59: 13072–13080.CrossRefPubMedGoogle Scholar
  69. Hairong, W. 2015. Rediscovering the value of the potato. Beijing Review. pp.: 1–2.Google Scholar
  70. Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A. Van Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics 12.Google Scholar
  71. Hatzis, C.M., G.K. Bertsias, M. Linardakis, J.M. Scott, and A.G. Kafatos. 2006. Dietary and other lifestyle correlates of serum folate concentrations in a healthy adult population in Crete, Greece: A cross-sectional study. Nutrition Journal 5: 5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Haynes, K.G., B.A. Clevidence, D. Rao, B.T. Vinyard, and J.M. White. 2010a. Genotype x environment interactions for potato tuber carotenoid content. Journal of the American Society for Horticultural Science 135: 250–258.CrossRefGoogle Scholar
  73. Haynes, K.G., B.A. Clevidence, D. Rao, B.T. Vinyard, and J.M. White. 2010b. Genotype× environment interactions for potato tuber carotenoid content. Journal of the American Society for Horticultural Science 135: 250–258.CrossRefGoogle Scholar
  74. Hellmann, H., and S. Mooney. 2010. Vitamin B6: A molecule for human health? Molecules 15: 442–459.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Holland, B., I.D. Unwin and D.H. Buss. (1996) Vegetables, herbs and spices. Fruits and Nuts. Royal Society of Chemistry, Cambridge UK.Google Scholar
  76. Hollman, P.C.H. 2014. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Archives of Biochemistry and Biophysics 559: 100–105.CrossRefPubMedGoogle Scholar
  77. Holt, S.H., J.C. Miller, P. Petocz, and E. Farmakalidis. 1995. A satiety index of common foods. European Journal of Clinical Nutrition 49: 675–690.PubMedGoogle Scholar
  78. Hoy, M.K., and J.D. Goldman. 2012. Potassium intake of the U.S. population: What we eat in America, National Health and nutrition examination survey 2009–2012. Food Surveys Research Group Dietary Data Brief No.: 10.Google Scholar
  79. Hung, C.-Y., J.R. Murray, S.M. Ohmann, and C.B.S. Tong. 1997. Anthocyanin accumulation during potato tuber development. Journal of the American Society for Horticultural Science 122: 20–23.CrossRefGoogle Scholar
  80. Iwanzik, W., M. Tevini, R. Stute, and R. Hilbert. 1983. Carotinoidgehalt und -zusammensetzung verschiedener deutscher Kartoffelsorten und deren Bedeutung fur die Fleischfarbe der Knolle. Potato Research 26: 149–162.CrossRefGoogle Scholar
  81. Jansen, G., and W. Flamme. 2006. Coloured potatoes (Solanum Tuberosum L.) - anthocyanin content and tuber quality. Genetic Resources and Crop Evolution 53: 1321–1331.CrossRefGoogle Scholar
  82. Jansky, S. 2000. Breeding for disease resistance in potato. Plant Breeding Reviews 19: 69–155.Google Scholar
  83. Jiang, Z., C. Chen, J. Wang, W. Xie, M. Wang, X. Li, and X. Zhang. 2016. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. Journal of Natural Medicines 70: 45–53.CrossRefPubMedGoogle Scholar
  84. Jung, C.S., H.M. Griffiths, D.M. De Jong, S. Cheng, M. Bodis, and W.S. De Jong. 2005. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical and Applied Genetics 110: 269–275.CrossRefPubMedGoogle Scholar
  85. Jung, C.S., H.M. Griffiths, D.M. De Jong, S. Cheng, M. Bodis, T.S. Kim, and W.S. De Jong. 2009. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics 120: 45–57.CrossRefPubMedGoogle Scholar
  86. Kaspar, K.L., J.S. Park, C.R. Brown, B.D. Mathison, D.A. Navarre, and B.P. Chew. 2011. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. The Journal of Nutrition 141: 108–111.CrossRefPubMedGoogle Scholar
  87. Keijbets, M.J.H., and G. Ebbenhorst-Seller. 1990. Loss of vitamin C (L-ascorbic acid) during long-term cold storage of Dutch table potatoes. Potato Research 33: 125–130.CrossRefGoogle Scholar
  88. King, D.E., A.G. Mainous, M.E. Geesey 3rd, and R.F. Woolson. 2005. Dietary magnesium and C-reactive protein levels. Journal of the American College of Nutrition 24: 166–171.CrossRefPubMedGoogle Scholar
  89. Koes, R., W. Verweij, and F. Quattrocchio. 2005. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10: 236–242.CrossRefPubMedGoogle Scholar
  90. Konings, E.J., H.H. Roomans, E. Dorant, R.A. Goldbohm, W.H. Saris, and P.A. van den Brandt. 2001. Folate intake of the Dutch population according to newly established liquid chromatography data for foods. The American Journal of Clinical Nutrition 73: 765–776.CrossRefPubMedGoogle Scholar
  91. Kuhn, D.N., J. Chappell, A. Boudet, and K. Hahlbrock. 1984. Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proceedings of the National Academy of Sciences of the United States of America 81: 1102–1106.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kulen, O., C. Stushnoff, and D.G. Holm. 2013. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of the Science of Food and Agriculture 93: 2437–2444.CrossRefPubMedGoogle Scholar
  93. Kumar, A., K.A. Mosa, L. Ji, U. Kage, D. Dhokane, S. Karre, D. Madalageri, and N. Pathania. 2017. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition: 1–17.Google Scholar
  94. Legrand, D., and A.J. Scheen. 2007. Does coffee protect against type 2 diabetes? Revue Médicale de Liège 62: 554–559.PubMedGoogle Scholar
  95. Lewis, C.E., J.R.L. Walker, J.E. Lancaster, and K.H. Sutton. 1998. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I. Coloured cultivars of Solanum tuberosum L. Journal of the Science of Food and Agriculture 77: 45–57.CrossRefGoogle Scholar
  96. Licciardello, F., S. Lombardo, V. Rizzo, I. Pitino, G. Pandino, M.G. Strano, G. Muratore, C. Restuccia, and G. Mauromicale. 2018. Integrated agronomical and technological approach for the quality maintenance of ready-to-fry potato sticks during refrigerated storage. Postharvest Biology and Technology 136: 23–30.CrossRefGoogle Scholar
  97. Linderborg, K.M., J.E. Salo, M. Kalpio, A.L. Vuorinen, M. Kortesniemi, M. Griinari, M. Viitanen, B. Yang, and H. Kallio. 2016. Comparison of the postprandial effects of purple-fleshed and yellow-fleshed potatoes in healthy males with chemical characterization of the potato meals. International Journal of Food Sciences and Nutrition 67: 581–591.CrossRefGoogle Scholar
  98. Lisinska, G. and W. Leszczynski. (1989) Potato Science and Technology Springer.Google Scholar
  99. Liu, Y., K. Lin-Wang, C. Deng, B. Warran, L. Wang, B. Yu, H. Yang, J. Wang, R.V. Espley, J. Zhang, D. Wang, and A.C. Allan. 2015. Comparative transcriptome analysis of White and purple potato to identify genes involved in anthocyanin biosynthesis. PLoS One 10: e0129148.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Liu, Y., K. Lin-Wang, R.V. Espley, L. Wang, H. Yang, B. Yu, A. Dare, E. Varkonyi-Gasic, J. Wang, J. Zhang, D. Wang, and A.C. Allan. 2016. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany 67: 2159–2176.CrossRefPubMedPubMedCentralGoogle Scholar
  101. López-Cobo, A., A.M. Gómez-Caravaca, L. Cerretani, A. Segura-Carretero, and A. Fernández-Gutiérrez. 2014. Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity. Journal of Food Composition and Analysis 36: 1–11.CrossRefGoogle Scholar
  102. Lovat, C., A.M.K. Nassar, S. Kubow, X.-Q. Li, and D.J. Donnelly. 2016. Metabolic biosynthesis of potato (Solanum tuberosum l.) antioxidants and implications for human health. Critical Reviews in Food Science and Nutrition 56: 2278–2303.CrossRefPubMedGoogle Scholar
  103. Love, S.L., and J.J. Pavek. 2008. Positioning the potato as a primary food source of vitamin C. Amer. J. Pot. Res. 83: 171–180.CrossRefGoogle Scholar
  104. Love, S.L., T. Salaiz, B. Shafii, W.J. Price, A.R. Mosley, and R.E. Thornton. 2004. Stability of expression and concentration of ascorbic acid in north American potato germplasm. HortScience 39: 156–160.CrossRefGoogle Scholar
  105. Luis, G., C. Rubio, D. González-Weller, A.J. Gutiérrez, C. Revert, and A. Hardisson. 2011. Comparative study of the mineral composition of several varieties of potatoes (Solanum tuberosum L.) from different countries cultivated in Canary Islands (Spain). International Journal of Food Science and Technology 46: 774–780.CrossRefGoogle Scholar
  106. Malmberg, A., and O. Theander. 1985. Determination of Chlorogenic acid in potato tubers. Journal of Agricultural and Food Chemistry 33: 549–551.CrossRefGoogle Scholar
  107. Manach, C., A. Scalbert, C. Morand, C. Remesy, and L. Jimenez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79: 727–747.CrossRefPubMedGoogle Scholar
  108. Mann, C. 2011. How the potato changed the world. Smithsonian.Google Scholar
  109. Martin, C., and J. Li. 2017. Medicine is not health care, food is health care: Plant metabolic engineering, diet and human health. The New Phytologist 216: 699–719.CrossRefPubMedGoogle Scholar
  110. Mooney, S., L. Chen, C. Kuhn, R. Navarre, N.R. Knowles, and H. Hellmann. 2013. Genotype-specific changes in vitamin B 6 content and the PDX family in potato. Biomedical Research International 2013: 389723.CrossRefGoogle Scholar
  111. Morris, W.L., L. Ducreux, D.W. Griffiths, D. Stewart, H.V. Davies, and M.A. Taylor. 2004. Carotenogenesis during tuber development and storage in potato. Journal of Experimental Botany 55: 975–982.CrossRefPubMedGoogle Scholar
  112. Nara, K., T. Miyoshi, T. Honma, and H. Koga. 2006. Antioxidative activity of bound-form phenolics in potato peel. Bioscience, Biotechnology, and Biochemistry 70: 1489–1491.CrossRefPubMedGoogle Scholar
  113. Nassar, A.M.K., S. Kubow, Y. Leclerc, and D.J. Donnelly. 2014. Somatic mining for phytonutrient improvement of 'Russet Burbank' potato. American Journal of Potato Research 91: 89–100.CrossRefGoogle Scholar
  114. Navarre, D.A., S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chemistry 127: 34–41.CrossRefGoogle Scholar
  115. Navarre, D.A., R.S. Payyavula, R. Shakya, N.R. Knowles, and S. Pillai. 2013. Changes in potato phenylpropanoid metabolism during tuber development. Plant Physiology and Biochemistry 65: 89–101.CrossRefPubMedGoogle Scholar
  116. Navarre, D.A., A. Goyer, R. Payyavula and H. Hellmann. (2014) Nutritional Characteristics of Potatoes, in: D. A. Navarre and M. J. Pavek (Eds.), The potato: Botany, production and uses, CABI, Boston, MA. pp. 310–344.Google Scholar
  117. Nesterenko, S., and K.C. Sink. 2003. Carotenoid profiles of potato breeding lines and selected cultivars. HortScience 38: 1173–1177.CrossRefGoogle Scholar
  118. Niggeweg, R., A.J. Michael, and C. Martin. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22: 746–754.CrossRefPubMedGoogle Scholar
  119. Nunn, N., and N. Qian. 2011. The potato's contribution to population and urbanization: Evidence from a historical experiment. Quarterly Journal of Economics 126: 593–650.CrossRefPubMedGoogle Scholar
  120. Ombra, M.N., F. Fratianni, T. Granese, F. Cardinale, A. Cozzolino, and F. Nazzaro. 2015. In vitro antioxidant, antimicrobial and anti-proliferative activities of purple potato extracts (Solanum tuberosum cv Vitelotte noire) following simulated gastro-intestinal digestion. Natural Product Research 29: 1087–1091.CrossRefPubMedGoogle Scholar
  121. Paget, M., W. Amoros, E. Salas, R. Eyzaguirre, P. Alspach, L. Apiolaza, A. Noble, and M. Bonierbale. 2014. Genetic evaluation of micronutrient traits in diploid potato from a base population of Andean landrace cultivars. Crop Science 54: 1949–1959.CrossRefGoogle Scholar
  122. Parr, A.J., and G.P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture 80: 985–1012.CrossRefGoogle Scholar
  123. Parr, A.J., F.A. Mellon, I.J. Colquhoun, and H.V. Davies. 2005. Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. Journal of Agricultural and Food Chemistry 53: 5461–5466.CrossRefPubMedGoogle Scholar
  124. Payyavula, R.S., D.A. Navarre, J. Kuhl, and A. Pantoja. 2013a. Developmental effects on phenolic, flavonol, anthocyanin, and carotenoid metabolites and gene expression in potatoes. Journal of Agricultural and Food Chemistry 61: 7357–7365.CrossRefPubMedGoogle Scholar
  125. Payyavula, R.S., R.K. Singh, and D.A. Navarre. 2013b. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. Journal of Experimental Botany 64: 5115–5131.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Payyavula, R.S., R. Shakya, V.G. Sengoda, J.E. Munyaneza, P. Swamy, and D.A. Navarre. 2015. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnology Journal 13: 551–564.CrossRefPubMedGoogle Scholar
  127. Peña, C., L.-P. Restrepo-Sánchez, A. Kushalappa, L.-E. Rodríguez-Molano, T. Mosquera, and C.-E. Narváez-Cuenca. 2015. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT - Food Science and Technology 62: 76–82.CrossRefGoogle Scholar
  128. Percudani, R., and A. Peracchi. 2009. The B6 database: A tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10: 273.CrossRefPubMedPubMedCentralGoogle Scholar
  129. PGSC. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.CrossRefGoogle Scholar
  130. Pillai, S., D.A. Navarre, and J.B. Bamberg. 2013. Analysis of polyphenols, anthocyanins and carotenoids in tubers from Solanum tuberosum group Phureja, Stenotomum and Andigena. Amer. J. Pot. Res. 90: 440–450.CrossRefGoogle Scholar
  131. Ramdath, D.D., E. Padhi, A. Hawke, T. Sivaramalingam, and R. Tsao. 2014. The glycemic index of pigmented potatoes is related to their polyphenol content. Food & Function 5: 909–915.CrossRefGoogle Scholar
  132. Randhawa, K.S., K.S. Sandhu, G. Kaur, and D. Singh. 1984. Studies of the evaluation of different genotypes of potato Solanum tuberosum for yield and mineral contents. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum). 34: 239–242.CrossRefGoogle Scholar
  133. Ray, D.K., N.D. Mueller, P.C. West, and J.A. Foley. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8: e66428.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Reddivari, L., A.L. Hale, and J.C. Miller. 2007a. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. Journal of Agricultural and Food Chemistry 55: 8073–8079.CrossRefPubMedGoogle Scholar
  135. Reddivari, L., J. Vanamala, S. Chintharlapalli, S.H. Safe, and J.C. Miller Jr. 2007b. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 28: 2227–2235.CrossRefPubMedGoogle Scholar
  136. Rivero, R.C., P.S. Hernández, E.M.R.g. Rodrı́guez, J.D. Martı́n, and C.D.a. Romero. 2003. Mineral concentrations in cultivars of potatoes. Food Chemistry 83: 247–253.Google Scholar
  137. Robinson, B., V. Sathuvalli, J. Bamberg, and A. Goyer. 2015. Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 6: 1300–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rumold, C.U., and M.S. Aldenderfer. 2016. Late archaic–early formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru. Proceedings of the National Academy of Sciences 113: 13672–13677.CrossRefGoogle Scholar
  139. Sales, C.H., and L.d.F.C. Pedrosa. 2006. Magnesium and diabetes mellitus: Their relation. Clinical Nutrition 25: 554–562.Google Scholar
  140. Sanchez-Castillo, C.P., P.J.S. Dewey, A. Aguirre, J.J. Lara, R. Vaca, P.L.d.l. Barra, M. Ortiz, I. Escamilla, and W.P.T. James. 1998. The mineral content of Mexican fruits and vegetables. Journal of Food Composition and Analysis 11: 340–356.Google Scholar
  141. Scalbert, A., C. Manach, C. Morand, C. Remesy, and L. Jimenez. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45: 287–306.CrossRefPubMedGoogle Scholar
  142. Scurrah, M., W. Amoros, G. Burgos, R. Schafleitner, and M. Bonierbale. 2006. Back to the future: Millennium traits in native varieties, VI International Solanaceae conference: Genomics meets. Biodiversity 745: 369–378.Google Scholar
  143. Sido, A., S. Radhakrishnan, S.W. Kim, E. Eriksson, F. Shen, Q. Li, V. Bhat, L. Reddivari, and J.K. Vanamala. 2017. A food-based approach that targets interleukin-6, a key regulator of chronic intestinal inflammation and colon carcinogenesis. The Journal of Nutritional Biochemistry 43: 11–17.CrossRefPubMedGoogle Scholar
  144. Singh, R.P., M. Singh, and R.R. King. 1998. Use of citric acid for neutralizing polymerase chain reaction inhibition by chlorogenic acid in potato extracts. Journal of Virological Methods 74: 231–235.CrossRefPubMedGoogle Scholar
  145. Spooner, D.M., J. Nunez, G. Trujillo, M. del Rosario Herrera, F. Guzman, and M. Ghislain. 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences 104: 19398–19403.CrossRefGoogle Scholar
  146. Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review 80: 283–383.CrossRefGoogle Scholar
  147. SR28. 2016. USDA, Agricultural Research Service, Nutrient Data Laboratory, USDA National Nutrient Database for Standard Reference. Release 28.Google Scholar
  148. Stushnoff, C., D. Holm, M.D. Thompson, W. Jiang, H.J. Thompson, N.I. Joyce, and P. Wilson. 2008. Antioxidant properties of cultivars and selections from the Colorado potato breeding program. American Journal of Potato Research 85: 267–276.CrossRefGoogle Scholar
  149. Stushnoff, C., L.J. Ducreux, R.D. Hancock, P.E. Hedley, D.G. Holm, G.J. McDougall, J.W. McNicol, J. Morris, W.L. Morris, J.A. Sungurtas, S.R. Verrall, T. Zuber, and M.A. Taylor. 2010. Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. Journal of Experimental Botany 61: 1225–1238.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2017. Variation in tuber mineral concentrations among accessions of Solanum species held in the commonwealth potato collection. Genetic Resources and Crop Evolution 64: 1927–1935.CrossRefGoogle Scholar
  151. Šulc, M., Z. Kotíková, L. Paznocht, V. Pivec, K. Hamouz, and J. Lachman. 2017. Changes in anthocyanidin levels during the maturation of color-fleshed potato (Solanum tuberosum L.) tubers. Food Chemistry 237: 981–988.CrossRefPubMedGoogle Scholar
  152. Sulli, M., G. Mandolino, M. Sturaro, C. Onofri, G. Diretto, B. Parisi, and G. Giuliano. 2017. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12: e0184143.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sun, Y., C.H. Byon, Y. Yang, W.E. Bradley, L.J. Dell’Italia, P.W. Sanders, A. Agarwal, H. Wu, and Y. Chen. 2017. Dietary potassium regulates vascular calcification and arterial stiffness. JCI Insight 2.Google Scholar
  154. Tamasi, G., M. Cambi, N. Gaggelli, A. Autino, M. Cresti, and R. Cini. 2015. The content of selected minerals and vitamin C for potatoes (Solanum tuberosum L.) from the high Tiber Valley area, Southeast Tuscany. Journal of Food Composition and Analysis 41: 157–164.CrossRefGoogle Scholar
  155. Tan, J.S., J.J. Wang, V. Flood, E. Rochtchina, W. Smith, and P. Mitchell. 2008. Dietary antioxidants and the long-term incidence of age-related macular degeneration: The Blue Mountains eye study. Ophthalmology 115: 334–341.CrossRefPubMedGoogle Scholar
  156. Tedone, L., R.D. Hancock, S. Alberino, S. Haupt, and R. Viola. 2004. Long-distance transport of L-ascorbic acid in potato. BMC Plant Biology 4: 16.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Tein, B., K. Kauer, V. Eremeev, A. Luik, A. Selge, and E. Loit. 2014. Farming systems affect potato (Solanum tuberosum L.) tuber and soil quality. Field Crops Research 156: 1–11.CrossRefGoogle Scholar
  158. Tierno, R., and J.I. Ruiz de Galarreta. 2015. Characterization of high anthocyanin-producing tetraploid potato cultivars selected for breeding using morphological traits and microsatellite markers. Plant Genetic Resources 15: 147–156.CrossRefGoogle Scholar
  159. Tierno, R., and J.I. Ruiz de Galarreta. 2016. Heritability of target bioactive compounds and hydrophilic antioxidant capacity in purple- and red-fleshed tetraploid potatoes. Crop & Pasture Science 67: 1309.CrossRefGoogle Scholar
  160. Tohge, T., and A.R. Fernie. 2017. An overview of compounds derived from the shikimate and Phenylpropanoid pathways and their medicinal importance. Mini Reviews in Medicinal Chemistry 17: 1013–1027.CrossRefPubMedGoogle Scholar
  161. Tosun, B.N., and S. Yücecan. 2008. Influence of commercial freezing and storage on vitamin C content of some vegetables. International Journal of Food Science and Technology 43: 316–321.CrossRefGoogle Scholar
  162. True, R.H., J.M. Hogan, J. Augustin, S.J. Johnson, C. Teitzel, R.B. Toma, and R.L. Shaw. 1978. Mineral composition of freshly harvested potatoes. American Potato J. 55: 511–519.CrossRefGoogle Scholar
  163. USDA-ERS. 2015. Vegetables & Pulses http://www.ers.usda.gov/topics/crops/vegetables-pulses/potatoes.aspx: Accessed December 2017.
  164. Valcarcel, J., K. Reilly, M. Gaffney, and N. O’Brien. 2015a. Total carotenoids and l-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Research 58: 29–41.CrossRefGoogle Scholar
  165. Valcarcel, J., K. Reilly, M. Gaffney, and N.M. O’Brien. 2015b. Antioxidant activity, Total phenolic and Total flavonoid content in sixty varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Research 58: 221–244.CrossRefGoogle Scholar
  166. Vales, M.I., C.R. Brown, S. Yilma, D.C. Hane, S.R. James, C.C. Shock, B.A. Charlton, E. Karaagac, A.R. Mosley, D. Culp, E. Feibert, J.C. Stark, M.J. Pavek, N.R. Knowles, R.G. Novy, and J.L. Whitworth. 2012. Purple pelisse: A specialty ‘fingerling’ potato with purple skin and flesh and medium specific gravity. American Journal of Potato Research 89: 306–314.CrossRefGoogle Scholar
  167. Valiñas, M.A., M.L. Lanteri, A. ten Have, and A.B. Andreu. 2017. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chemistry 229: 837–846.CrossRefPubMedGoogle Scholar
  168. van de Wiel, C.C.M., J.G. Schaart, L.A.P. Lotz, and M.J.M. Smulders. 2017. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports 11: 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  169. van Niekerk, C., H. Schönfeldt, N. Hall, and B. Pretorius. 2016. The role of biodiversity in food security and nutrition: A potato cultivar case study. Food and Nutrition Sciences 7: 371–382.CrossRefGoogle Scholar
  170. Vinson, J.A., C.A. Demkosky, D.A. Navarre, and M.A. Smyda. 2012. High-antioxidant potatoes: Acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. Journal of Agricultural and Food Chemistry 60: 6749–6754.CrossRefPubMedGoogle Scholar
  171. Viola, R., D. Vreugdenhil, H.V. Davies, and L. Sommerville. 1998. Accumulation of L-ascorbic acid in tuberising stolon tips of potato (Solanum tuberosum L). Journal of Plant Physiology 152: 58–63.CrossRefGoogle Scholar
  172. Vogt, T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3: 2–20.CrossRefPubMedGoogle Scholar
  173. Wegener, C.B., H.-U. Jurgens, and G. Jansen. 2017. Drought stress affects bioactive compounds in potatoes (Solanum tuberosum L.) relevant to non-communicable diseases. Functional Foods in Health and Disease 7: 17–35.CrossRefGoogle Scholar
  174. WHO. 2017. Micronutrient deficiencies.Google Scholar
  175. Wills, R.B.H., J.S.K. Lim, and H. Greenfield. 1984. Variation in nutrient composition of Australian retail potatoes over a 12-month period. Journal of the Science of Food and Agriculture 35: 1012–1017.CrossRefGoogle Scholar
  176. Wolters, A.-M.A., J.G.A.M.L. Uitdewilligen, B.A. Kloosterman, R.C.B. Hutten, R.G.F. Visser, and H.J. van Eck. 2010. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology 73: 659–671.CrossRefPubMedPubMedCentralGoogle Scholar
  177. Yamdeu, G., Joseph Hubert, P.M. Mankad, A.K. Shah, N.J. Patel, R.R. Acharya, and J.G. Talati. 2017. Effect of storage temperature on vitamin C, Total Phenolics, UPLC phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Horticultural Plant Journal 3: 73–89.CrossRefGoogle Scholar
  178. Zhang, Y., S. Cheng, D. De Jong, H. Griffiths, R. Halitschke, and W. De Jong. 2009. The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics 119: 931–937.CrossRefPubMedGoogle Scholar
  179. Zhang, H., B. Yang, J. Liu, D. Guo, J. Hou, S. Chen, B. Song, and C. Xie. 2017. Analysis of structural genes and key transcription factors related to anthocyanin biosynthesis in potato tubers. Scientia Horticulturae 225: 310–316.CrossRefGoogle Scholar
  180. Zhao, X., F. Sheng, J. Zheng, and R. Liu. 2011. Composition and stability of anthocyanins from purple Solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin. Journal of Agricultural and Food Chemistry 59: 7902–7909.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Irrigated Agricultural Research and Extension CenterWashington State UniversityProsserUSA
  2. 2.Temperate Tree Fruit and Vegetable Research UnitUSDA-Agricultural Research ServiceProsserUSA
  3. 3.Hermiston Agricultural Research & Extension CenterOregon State UniversityHermistonUSA

Personalised recommendations