Advertisement

Potato Starch: a Review of Physicochemical, Functional and Nutritional Properties

  • John H. Dupuis
  • Qiang Liu
Invited Review
  • 23 Downloads

Abstract

With a rapid increase in type-2 diabetes mellitus (T2DM) throughout the world in recent years, it has also become a major human health issue. Today, more than one third of the world's population is living with diabetes or prediabetes. Expenditures associated with medical treatment constitutes a huge financial burden on our society and costs billions of taxpayers’ dollars. Although the etiology is multifactorial, diet has been identified as the single most important contributing environmental factor to the development of this disease. Potatoes are an important agricultural commodity as a staple food and for many industrial uses. Although native potato starch is resistant to digestion, it is rapidly digestible in fully cooked potatoes. It results in the high glycemic index (GI) of most processed potato products, which are not suitable for people with T2DM and obesity. Due to the complexity of foods containing different chemical compositions, multiphase structures, and composite systems, we know little about the structural characteristics of starch in cooked and cooled potato products, how food processing can influences the structure of starch to create nutritional benefits, and the mechanism of low GI potato-based foods. In this chapter, we will address the role of potato starch chemistry and structure on nutritional properties of potato and how changes in the physical, chemical and nutritional properties of starch occur as they are subjected to different treatment conditions for potato food processing and nutrition.

Keywords

Gelatinization Rheology Retrogradation Resistant starch Digestibility 

Resumen

Con un rápido incremento en diabetes mellitus (T2DM) en el mundo en años recientes, también se ha convertido en un tema importante en la salud humana. Actualmente hay más de 1/3 de la población mundial viviendo con diabetes o con prediabetes. Los gastos asociados con el tratamiento médico constituyen una enorme carga financiera en nuestra sociedad, y cuesta billones de dólares de nuestros impuestos. Aun cuando la etiología es multifactorial, se ha identificado a la dieta como el único factor ambiental más importante que contribuye al desarrollo de la enfermedad. La papa es un producto agrícola importante como un alimento básico y para muchos usos industriales. Aun cuando el almidón original de la papa es resistente a la digestión, es fácilmente digerible en papas cocinadas completamente. Esto resulta en un índice glicémico alto (GI) en la mayoría de los productos procesados de la papa, no deseable para las personas con T2DM y obesidad. Debido a la complejidad de los alimentos en diferentes composiciones químicas, con estructura multifase y un sistema compuesto, sabemos poco acerca de las características estructurales del almidón en papa cocinada y enfriada. Tampoco entendemos como el procesamiento de la comida influencia la estructura deseable del almidón para beneficio nutricional, ni entendemos el mecanismo de bajo GI derivado de algunos alimentos de papa. En este capítulo, mencionaremos el papel de la química del almidón de la papa y la estructura de las propiedades nutricionales de la papa, y cómo los cambios en las propiedades físicas químicas y nutricionales del almidón se presentan a medida que se someten a diferentes condiciones de tratamientos para el procesamiento y nutrición de alimentos de la papa.

References

  1. Ahmadi-Abhari, S., A.J.J. Woortman, A.A.C.M. Oudhuis, R.J. Hamer, and K. Loos. 2013. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase. Carbohydrate Polymers 97 (2): 436–440.CrossRefPubMedGoogle Scholar
  2. Akilen, R., N. Deljoomanesh, S. Hunschede, C.E. Smith, M.U. Arshad, R. Kubant, and G.H. Anderson. 2016. The effects of potatoes and other carbohydrate side dishes consumed with meat on food intake, glycemia and satiety response in children. Nutrition & Diabetes 6: e195.CrossRefGoogle Scholar
  3. Alvani, K., X. Qi, R.F. Tester, and C.E. Snape. 2011. Physico-chemical properties of potato starches. Food Chemistry 125 (3): 958–965.CrossRefGoogle Scholar
  4. Andersson, M., M. Melander, P. Pojmark, H. Larsson, L. Bülow, and P. Hofvander. 2006. Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. Journal of Biotechnology 123 (2): 137–148.CrossRefPubMedGoogle Scholar
  5. Ashwar, B.A., A. Gani, A. Shah, I. Wani, F. Masoodi Ahmed, and Ahmad. 2015. Preparation, health benefits and applications of resistant starch—A review. Starch/Stärke 68 (3–4): 287–301.Google Scholar
  6. Avebe. (2018). "Waxy potato starch: Eliane™." https://www.avebe.com/producten/eliane/. Accessed 26 July 2018.
  7. Ballance, S., S.H. Knutsen, Ø.W. Fosvold, M. Wickham, C.D.-T. Trenado, and J. Monro. 2018. Glyceamic and insulinaemic response to mashed potato alone, or with broccoli, broccoli fibre or cellulose in healthy adults. European Journal of Nutrition 57 (1): 199–207.CrossRefPubMedGoogle Scholar
  8. Blennow, A., A.M. Bay-Smidt, B. Wischmann, C.E. Olsen, and B.L. Møller. 1998. The degree of starch phosphorylation is related to the chain length distribution of the neutral and the phosphorylated chains of amylopectin. Carbohydrate Research 307 (1): 45–54.CrossRefGoogle Scholar
  9. Blennow, A., B. Wischmann, K. Houborg, T. Ahmt, K. Jørgensen, S.B. Engelsen, O. Bandsholm, and P. Poulsen. 2005. Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. International Journal of Biological Macromolecules 36 (3): 159–168.CrossRefPubMedGoogle Scholar
  10. Bordoloi, A., L. Kaur, and J. Singh. 2012. Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chemistry 133 (4): 1092–1100.CrossRefGoogle Scholar
  11. Brand-Miller, J.C., S.H.A. Holt, D.B. Pawlak, and J. McMillan. 2002. Glycemic index and obesity. The American Journal of Clinical Nutrition 76 (suppl): 281S–285S.CrossRefPubMedGoogle Scholar
  12. Cai, L., and Y.-C. Shi. 2010. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches. Carbohydrate Polymers 79 (4): 1117–1123.CrossRefGoogle Scholar
  13. Chiu, C.-W., and D. Solarek. 2009. Chapter 17 - Modification of Starches. In Starch (Third Edition). J. BeMiller and R. Whistler, 629–655. San Diego: Academic Press.Google Scholar
  14. Chung, H.-J., D.-H. Shin, and S.-T. Lim. 2008. In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International 41 (6): 579–585.CrossRefGoogle Scholar
  15. Cohen, R., Y. Orlova, M. Kovalev, Y. Ungar, and E. Shimoni. 2008. Structural and functional properties of amylose complexes with Genistein. Journal of Agricultural and Food Chemistry 56 (11): 4212–4218.CrossRefPubMedGoogle Scholar
  16. Conlon, M.A., C.A. Kerr, C.S. McSweeney, R.A. Dunne, J.M. Shaw, S. Kang, A.R. Bird, M.K. Morell, T.J. Lockett, P.L. Molloy, A. Regina, S. Toden, J.M. Clarke, and D.L. Topping. 2012. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. The Journal of Nutrition 142 (5): 832–840.CrossRefPubMedPubMedCentralGoogle Scholar
  17. da Rosa Zavareze, E., and A.R.G. Dias. 2011. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers 83 (2): 317–328.CrossRefGoogle Scholar
  18. den Besten, G., K. van Eunen, A.K. Groen, K. Venema, D.-J. Reijngoud, and B.M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54: 2325–2340.CrossRefGoogle Scholar
  19. Diaz-Toledo, C., A.C. Kurilich, R. Re, M.S.J. Wickham, and L.C. Chambers. 2016. Satiety impact of different potato products compared to pasta control. Journal of the American College of Nutrition 35 (6): 537–543.CrossRefPubMedGoogle Scholar
  20. Dupuis, J.H., Z.-H. Lu, R.Y. Yada, and Q. Liu. 2016. The effect of thermal processing and storage on the physicochemical properties and in vitro digestibility of potatoes. International Journal of Food Science and Technology 51: 2233–2241.CrossRefGoogle Scholar
  21. Dupuis, J.H., T. Rong, R.Y. Yada, and Q. Liu. 2017. Physicochemical properties and in vitro digestibility of potato starch after inclusion with vanillic acid. LWT - Food Science and Technology 85: 218–224.CrossRefGoogle Scholar
  22. Eelderink, C., M. Schepers, T. Preston, R.J. Vonk, L. Oudhuis, and M.G. Priebe. 2012. Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. American Journal of Clinical Nutrition 96: 1017–1024.CrossRefPubMedGoogle Scholar
  23. Ellis, R.P., M.P. Cochrane, M.F.B. Dale, C.M. Duffus, A. Lynn, I.M. Morrison, R.D.M. Prentice, J.S. Swanston, and S.A. Tiller. 1998. Starch production and industrial use. Journal of the Science of Food and Agriculture 77 (3): 289–311.CrossRefGoogle Scholar
  24. Emenaker, N.J., and M.D. Basson. 1998. Short chain fatty acids inhibit human (SW1116) colon cancer cell invasion by reducing urokinase plasminogen activator activity and stimulating TIMP-1 and TIMP-2 activities, rather than via MMP modulation. Journal of Surgical Research 76 (1): 41–46.CrossRefPubMedGoogle Scholar
  25. Emenaker, N.J., G.M. Calaf, D. Cox, M.D. Basson, and N. Qureshi. 2001. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53, Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model. The Journal of Nutrition 131 (11): 3041S–3046S.CrossRefPubMedGoogle Scholar
  26. Englyst, H.N., S.M. Kingman, and J.H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 (S2): S33–S50.PubMedGoogle Scholar
  27. Erdmann, J., Y. Hebeisen, F. Lippl, S. Wagenpfeil, and V. Schusdziarra. 2007. Food intake and plasma ghrelin response during potato-, rice- and pasta-rich test meals. European Journal of Nutrition 46 (4): 196–203.CrossRefPubMedGoogle Scholar
  28. Escarpa, A., M.C. González, M.D. Morales, and F. Saura-Calixto. 1997. An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chemistry 60 (4): 527–532.CrossRefGoogle Scholar
  29. Fernandes, G., A. Velangi, and T.M.S. Wolever. 2005. Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association 105 (4): 557–562.CrossRefPubMedGoogle Scholar
  30. Fernqvist, F., L. Ekelund, and S. Spendrup. 2015. Changing consumer intake of potato, a focus group study. British Food Journal 117 (1): 210–221.CrossRefGoogle Scholar
  31. Foster-Powell, K., S.H.A. Holt, and J.C. Brand-Miller. 2002. International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition 76: 5–56.CrossRefPubMedGoogle Scholar
  32. Guilbot, A., and C. Mercier. 1985. Starch. The polysaccharides. G. O. Aspinall. New York: Academic Press, Inc..Google Scholar
  33. Guo, Z.-H., J.-W. Zhang, W. Di, and Z.H. Chen. 2008. Using RNAi technology to produce high-amylose potato plants. Scientia Agricultura Sinica 41 (2): 494–501.Google Scholar
  34. Han, J.-A., and J.N. BeMiller. 2007. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67 (3): 366–374.CrossRefGoogle Scholar
  35. Hätönen, K.A., J. Virtamo, J.G. Eriksson, H.K. Sinkko, J.E. Sundvall, and L.M. Valsta. 2011. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. British Journal of Nutrition 106 (2): 248–253.CrossRefPubMedGoogle Scholar
  36. Henry, C.J.K., H.J. Lightowler, F.L. Kendall, and M. Storey. 2006. The impact of the addition of toppings/fillings on the glycaemic response to commonly consumed carbohydrate foods. European Journal of Clinical Nutrition 60: 763–769.CrossRefPubMedGoogle Scholar
  37. Hofvander, P., M. Andersson, C.-T. Larsson, and H. Larsson. 2004. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnology Journal 2 (4): 311–320.CrossRefPubMedGoogle Scholar
  38. Hong, J., X.-A. Zeng, Z. Han, and C.S. Brennan. 2018. Effect of pulsed electric fields treatment on the nanostructure of esterified potato starch and their potential glycemic digestibility. Innovative Food Science & Emerging Technologies 45: 438–446.CrossRefGoogle Scholar
  39. Hoover, R. 2010. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition 50 (9): 835–847.CrossRefPubMedGoogle Scholar
  40. Hoover, R., and T. Vasanthan. 1993. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. Journal of Food Biochemistry 17 (5): 303–325.CrossRefGoogle Scholar
  41. Hung, P.V., N.T.L. Phi, and T.T.V. Vy. 2012. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch/Stärke 64 (12): 964–971.CrossRefGoogle Scholar
  42. Hung, P.V., N.H. Phat, and N.T.L. Phi. 2013. Physicochemical properties and antioxidant capacity of debranched starch–ferulic acid complexes. Starch/Stärke 65: 382–389.CrossRefGoogle Scholar
  43. Hung, P.V., N.T.H. My, and N.T.L. Phi. 2014. Impact of acid and heat–moisture treatment combination on physicochemical characteristics and resistant starch contents of sweet potato and yam starches. Starch/Stärke 66 (11–12): 1013–1021.CrossRefGoogle Scholar
  44. Hung, P.V., N.L. Vien, and N.T.L. Phi. 2016. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry 191: 67–73.CrossRefPubMedGoogle Scholar
  45. Hung, P.V., N.T.M. Huong, N.T.L. Phi, and N.N.T. Tien. 2017. Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. International Journal of Biological Macromolecules 95: 299–305.CrossRefPubMedGoogle Scholar
  46. Jenkins, P.J., and A.M. Donald. 1995. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules 17 (6): 315–321.CrossRefPubMedGoogle Scholar
  47. Jiranuntakul, W., C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, and D. Uttapap. 2011. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. Journal of Food Engineering 104 (2): 246–258.CrossRefGoogle Scholar
  48. Jochym, K., J. Kapusniak, R. Barczynska, and K. Śliżewska. 2012. New starch preparations resistant to enzymatic digestion. Journal of the Science of Food and Agriculture 92 (4): 886–891.CrossRefPubMedGoogle Scholar
  49. Juansang, J., C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, and D. Uttapap. 2012. Effect of gelatinisation on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chemistry 131 (2): 500–507.CrossRefGoogle Scholar
  50. Kadam, S.S., S.S. Dhumal, and N.D. Jambhale. 1991. Structure, nutritional composition, and quality. Potato: Production, processing, and products. D. K. Salunkhe, S. S. Kadam and S. J. Jadhav. Boca Raton, FL, USA: CRC Press, Inc..Google Scholar
  51. Kalita, D., D.G. Holm, D.V. LaBarbera, J.M. Petrash, and S.S. Jayanty. 2018. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One 13 (1): e0191025.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kapelko-Żeberska, M., T. Zięba, W. Pietrzak, and A. Gryszkin. 2016. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology 51 (7): 1647–1654.CrossRefGoogle Scholar
  53. Karlsson, M.E., A.M. Leeman, I.M.E. Björck, and A.-C. Eliasson. 2007. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry 100 (1): 136–146.CrossRefGoogle Scholar
  54. Kaur, L., J. Singh, O.J. McCarthy, and H. Singh. 2007. Physico-chemical, rheological and structural properties of fractionated potato starches. Journal of Food Engineering 82 (3): 383–394.CrossRefGoogle Scholar
  55. Kawai, K., S. Takato, T. Sasaki, and K. Kajiwara. 2012. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocolloids 27 (1): 228–234.CrossRefGoogle Scholar
  56. Kittisuban, P., B.-H. Lee, M. Suphantharika, and B.R. Hamaker. 2014. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohydrate Polymers 107: 182–191.CrossRefPubMedGoogle Scholar
  57. Le Blay, G.M., C.D. Michel, H.M. Blottière, and C.J. Cherbut. 2003. Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. Journal of Applied Microbiology 94 (2): 312–320.CrossRefPubMedGoogle Scholar
  58. Leach, H.W. 1959. Structure of starch granules. I. Swelling and solubility patterns of various starches. Cereal Chemistry 36: 534–544.Google Scholar
  59. Lee, S.Y., K.Y. Lee, and H.G. Lee. 2018. Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. International Journal of Biological Macromolecules 107 (A): 1235–1241.CrossRefPubMedGoogle Scholar
  60. Leeman, A.M., M.E. Karlsson, A.-C. Eliasson, and I.M.E. Björck. 2006. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers 65 (3): 306–313.CrossRefGoogle Scholar
  61. Li, X., M. Miao, H. Jiang, J. Xue, B. Jiang, T. Zhang, Y. Gao, and Y. Jia. 2014. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chemistry 164: 502–509.CrossRefPubMedGoogle Scholar
  62. Lisinska, G., and W. Leszczynski. 1989. Potato science and technology. Netherlands: Springer.Google Scholar
  63. Liu, Q., E. Weber, V. Currie, and R. Yada. 2003. Physicochemical properties of starches during potato growth. Carbohydrate Polymers 51 (2): 213–221.CrossRefGoogle Scholar
  64. Liu, Q., R. Tarn, D. Lynch, and N.M. Skjodt. 2007. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry 105: 897–907.CrossRefGoogle Scholar
  65. Liu, J., J. Ming, W. Li, and G. Zhao. 2012. Synthesis, characterisation and in vitro digestibility of carboxymethyl potato starch rapidly prepared with microwave-assistance. Food Chemistry 133 (4): 1196–1205.CrossRefGoogle Scholar
  66. Lopez-Rubio, A., B.M. Flanagan, E.P. Gilbert, and M.J. Gidley. 2008. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89 (9): 761–768.CrossRefPubMedGoogle Scholar
  67. Lu, Z.-H., E. Donner, R.Y. Yada, and Q. Liu. 2016. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydrate Polymers 154: 214–222.CrossRefPubMedGoogle Scholar
  68. Ludwig, D.S. 2002. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Journal of the American Medical Association 287: 2414–2423.CrossRefPubMedGoogle Scholar
  69. Lv, X., F. Ye, J. Li, J. Ming, and G. Zhao. 2016. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin. Carbohydrate Polymers 152: 317–326.CrossRefPubMedGoogle Scholar
  70. Mattila-Sandholm, T., P. Myllärinen, R. Crittenden, G. Mogensen, R. Fondén, and M. Saarela. 2002. Technological challenges for future probiotic foods. International Dairy Journal 12 (2): 173–182.CrossRefGoogle Scholar
  71. McComber, D.R., E.M. Osman, and R.A. Lohnes. 1988. Factors related to potato mealiness. Journal of Food Science 53 (5): 1423–1425.CrossRefGoogle Scholar
  72. McComber, D.R., H.T. Horner, M.A. Chamberlin, and D.F. Cox. 1994. Potato cultivar differences associated with mealiness. Journal of Agricultural and Food Chemistry 42 (11): 2433–2439.CrossRefGoogle Scholar
  73. Mishra, S., J. Monro, and D. Hedderley. 2008. Effect of processing on slowly digestible starch and resistant starch in potato. Starch/Stärke 60: 500–507.CrossRefGoogle Scholar
  74. Murphy, M.M., J.S. Douglass, and A. Birkett. 2008. Resistant starch intakes in the United States. Journal of the American Dietetic Association 108 (1): 67–78.CrossRefPubMedGoogle Scholar
  75. Panyoo, A.E., and M.N. Emmambux. 2016. Amylose–lipid complex production and potential health benefits: A mini-review. Starch/Stärke 69 (7–8): 1600203.Google Scholar
  76. Park, S.H., Y. Na, J. Kim, S.D. Kang, and K.-H. Park. 2018. Properties and applications of starch modifying enzymes for use in the baking industry. Food Science and Biotechnology 27 (2): 299–312.PubMedGoogle Scholar
  77. Perera, C., and H. Hoover. 1998. The reactivity of porcine pancreatic alpha-amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Starch/Stärke 50 (5): 206–213.CrossRefGoogle Scholar
  78. Pfister, B., and Zeeman, S.C. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences 73 (14): 2781–2807.Google Scholar
  79. Pycia, K., L. Juszczak, D. Gałkowska, and M. Witczak. 2012. Physicochemical properties of starches obtained from polish potato cultivars. Starch/Stärke 64 (2): 105–114.CrossRefGoogle Scholar
  80. Ramdath, D.D., E. Padhi, A. Hawke, T. Sivaramalingam, and R. Tsao. 2014. The glycemic index of pigmented potatoes is related to their polyphenol content. Food & Function 5 (5): 909–915.CrossRefGoogle Scholar
  81. Remya, R., A.N. Jyothi, and J. Sreekumar. 2017. Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation. Starch/Stärke 69 (7–8): 1600264.CrossRefGoogle Scholar
  82. Ring, S.G. 1985. Some studies on starch gelation. Starch/Stärke 37 (3): 80–83.CrossRefGoogle Scholar
  83. Rodríguez-Cabezas, M.E., D. Camuesco, B. Arribas, N. Garrido-Mesa, M. Comalada, E. Bailón, M. Cueto-Sola, P. Utrilla, E. Guerra-Hernández, C. Pérez-Roca, J. Gálvez, and A. Zarzuelo. 2010. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clinical Nutrition 29 (6): 832–839.CrossRefPubMedGoogle Scholar
  84. Saibene, D., and K. Seetharaman. 2010. Amylose involvement in the amylopectin clusters of potato starch granules. Carbohydrate Polymers 82 (2): 376–383.CrossRefGoogle Scholar
  85. Sang, Y., P.A. Seib, A.I. Herrera, O. Prakash, and Y.-C. Shi. 2010. Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry 118 (2): 323–327.CrossRefGoogle Scholar
  86. Sasaki, T., I. Sotome, and H. Okadome. 2015. In vitro starch digestibility and in vivo glucose response of gelatinized potato starch in the presence of non-starch polysaccharides. Starch/Stärke 67 (5–6): 415–423.CrossRefGoogle Scholar
  87. Schirmer, M., A. Höchstötter, M. Jekle, E. Arendt, and T. Becker. 2013. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids 32 (1): 52–63.CrossRefGoogle Scholar
  88. Schwall, G.P., R. Safford, R.J. Westcott, R. Jeffcoat, A. Tayal, Y.-C. Shi, M.J. Gidley, and S.A. Jobling. 2000. Production of very-high-amylose potato starch by inhibition of SBE a and B. Nature Biotechnology 18: 551–554.CrossRefPubMedGoogle Scholar
  89. Schwingshackl, L., C. Schwedhelm, G. Hoffmann, and H. Boeing. 2018. Potatoes and risk of chronic disease: A systematic review and dose–response meta-analysis. European Journal of Nutrition. Google Scholar
  90. Shin, S., J. Byun, K.H. Park, and T.W. Moon. 2004. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chemistry 81 (2): 194–198.CrossRefGoogle Scholar
  91. Singh, N., J. Singh, L. Kaur, N.S. Sodhi, and B.S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81 (2): 219–231.CrossRefGoogle Scholar
  92. Singh, N., D. Chawla, and J. Singh. 2004. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry 86 (4): 601–608.CrossRefGoogle Scholar
  93. Singh, J., L. Kaur, and O.J. McCarthy. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids 21 (1): 1–22.CrossRefGoogle Scholar
  94. Singh, J., R. Colussi, O.J. McCarthy, and L. Kaur. 2016. Chapter 8 - Potato Starch and Its Modification. In Advances in Potato Chemistry and Technology (Second Edition). J. Singh and L. Kaur, 195–247. San Diego, Academic Press.Google Scholar
  95. Sweedman, M.C., M.J. Tizzotti, C. Schäfer, and R.G. Gilbert. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers 92 (1): 905–920.CrossRefPubMedGoogle Scholar
  96. Tester, R.F., and W.R. Morrison. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67 (6): 551–557.Google Scholar
  97. Tian, J., S. Chen, C. Wu, J. Chen, X. Du, J. Chen, D. Liu, and X. Ye. 2016. Effects of preparation methods on potato microstructure and digestibility: An in vitro study. Food Chemistry 211: 564–569.CrossRefPubMedGoogle Scholar
  98. Tufvesson, F., V. Skrabanja, I. Björck, H.L. Elmståhl, and A.-C. Eliasson. 2001. Digestibility of starch systems containing amylose–glycerol monopalmitin complexes. LWT - Food Science and Technology 34 (3): 131–139.CrossRefGoogle Scholar
  99. Tufvesson, F., M. Wahlgren, and A.-C. Eliasson. 2003. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch/Stärke 55 (3–4): 138–149.CrossRefGoogle Scholar
  100. Vanier, N.L., S.L.M. El Halal, A.R.G. Dias, and E. da Rosa Zavareze. 2017. Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry 221: 1546–1559.CrossRefPubMedGoogle Scholar
  101. Varatharajan, V., R. Hoover, Q. Liu, and K. Seetharaman. 2010. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydrate Polymers 81 (2): 466–475.CrossRefGoogle Scholar
  102. Visser, R.G.F., I. Somhorst, G.J. Kuipers, N.J. Ruys, W.J. Feenstra, and E. Jacobsen. 1991. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Molecular and General Genetics MGG 225 (2): 289–296.CrossRefPubMedGoogle Scholar
  103. Wang, S., C. Li, L. Copeland, Q. Niu, and S. Wang. 2015. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14 (5): 568–585.CrossRefGoogle Scholar
  104. Waterschoot, J., S.V. Gomand, E. Fierens, and J.A. Delcour. 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke 67 (1–2): 14–29.CrossRefGoogle Scholar
  105. Wepner, B., E. Berghofer, E. Miesenberger, K. Tiefenbacher, and P.N.K. Ng. 2000. Citrate starch — Application as resistant starch in different food systems. Starch/Stärke 51 (10): 354–361.CrossRefGoogle Scholar
  106. Wickramasinghe, H.A.M., A. Blennow, and T. Noda. 2009. Physico-chemical and degradative properties of in-planta re-structured potato starch. Carbohydrate Polymers 77 (1): 118–124.CrossRefGoogle Scholar
  107. Woo, K.S., and P.A. Seib. 2002. Cross-linked resistant starch: Preparation and properties. Cereal Chemistry 79 (6): 819–825.CrossRefGoogle Scholar
  108. Xia, H., Y. Li, and Q. Gao. 2016. Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocolloids 55: 172–178.CrossRefGoogle Scholar
  109. Xie, X., and Q. Liu. 2004. Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch/Stärke 56 (8): 364–370.CrossRefGoogle Scholar
  110. Xie, Y.-Y., X.-P. Hu, Z.-Y. Jin, X.-M. Xu, and H.-Q. Chen. 2014a. Effect of repeated retrogradation on structural characteristics and in vitro digestibility of waxy potato starch. Food Chemistry 163: 219–225.CrossRefPubMedGoogle Scholar
  111. Xie, Y.-Y., X.-P. Hu, Z.-Y. Jin, X.-M. Xu, and H.-Q. Chen. 2014b. Effect of temperature-cycled retrogradation on in vitro digestibility and structural characteristics of waxy potato starch. International Journal of Biological Macromolecules 67: 79–84.CrossRefPubMedGoogle Scholar
  112. Yang, L., B. Zhang, J. Yi, J. Liang, Y. Liu, and L.-M. Zhang. 2013. Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes. Starch/Stärke 65 (7–8): 593–602.CrossRefGoogle Scholar
  113. Ze, X., S.H. Duncan, P. Louis, and H.J. Flint. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal 6 (8): 1535–1543.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhao, X., M. Andersson, and R. Andersson. 2018. Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry 251: 58–63.CrossRefPubMedGoogle Scholar
  115. Zhou, F., Q. Liu, H. Zhang, Q. Chen, and B. Kong. 2016. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules 84: 410–417.CrossRefPubMedGoogle Scholar
  116. Zięba, T., M. Kapelko, and A. Szumny. 2013. Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydrate Polymers 94 (1): 193–198.CrossRefPubMedGoogle Scholar
  117. Zobel, H.F. 1988. Molecules to granules: A comprehensive starch review. Starch/Stärke 40 (2): 44–50.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  1. 1.Food, Nutrition, and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
  2. 2.Guelph Research and Development Center, Agriculture and Agri-Food CanadaGuelphCanada

Personalised recommendations