American Journal of Potato Research

, Volume 92, Issue 3, pp 426–434 | Cite as

Comparative Study of Soft Computing Methodologies for Energy Input–Output Analysis to Predict Potato Production

  • Sara Rajabi Hamedani
  • Misbah Liaqat
  • Shahaboddin ShamshirbandEmail author
  • Othman Saleh Al-Razgan
  • Eiman Tamah Al-Shammari
  • Dalibor Petković


In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to predict potato production in Iran. Data related to potato yield from 2010 to 2011 was collected from 50 potato producers in Hamedan, Iran. The resulting ANFIS network has an input layer with eight neurons and an output layer with a single neuron (potato yield). The energy inputs were manual labor, diesel, chemical fertilizers, and manure from farm animals, chemicals, machinery, water, and seed. The most significant and influential inputs were selected from the eight initial inputs and the ANFIS network was used to choose the parameters that have the most influence on potato yield. A new ANFIS model was created after the three most influential parameters were selected. The new ANFIS model was then utilized to estimate yield using the three energy inputs. Next, the ANFIS model results were compared with the results from the support vector regression (SVR) technique. The end results revealed that ANFIS provided more accurate predictions and had the capacity to generalize. The Pearson correlation coefficient (r) for ANFIS potato yield prediction was 0.9999 in the training and testing phases, while the SVR model had a correlation coefficient of 0.8484 in training and 0.9984 in testing.


Potato yield Input energy Prediction ANFIS SVR 


En este estudio se desarrolló un sistema de inferencia adaptativa de lógica difusa (ANFIS) para predecir la producción de papa en Irán. Se colectaron datos relacionados con el rendimiento de papa de 2010 a 2011 de 50 productores en Hamedan, Irán. La red ANFIS resultante tiene una capa de insumos con ocho neuronas y una capa de salidas con una única neurona (rendimiento de papa). Los insumos de energía fueron mano de obra, diésel, fertilizantes químicos y estiércol de animales de granja, químicos, maquinaria, agua y semilla. Se seleccionaron los insumos más significativos y de influencia de los ocho insumos iniciales, y se usó la red ANFIS para escoger los parámetros que tienen la mayor influencia en el rendimiento de papa. Se creó un nuevo modelo ANFIS después que se seleccionaron los tres parámetros de mayor influencia. Entonces se utilizó el nuevo modelo ANFIS para estimar rendimiento usando los tres insumos de energía. Después, los resultados del modelo ANFIS se compararon con los resultados de la técnica de regresión de vector de respaldo (SVR). Los resultados finales revelaron que ANFIS suministró predicciones más precisas y tuvo la capacidad de generalizar. El coeficiente de correlación de Pearson (r) para la predicción del rendimiento de papa por ANFIS fue 0.9999 en las fases de formación y de prueba, e el modelo SVR tuvo un coeficiente de correlación de 0.8484 en formación y 0.9984 en prueba.



This work is supported by the Bright Spark Unit, University of Malaya, Malaysia.


  1. Akbarzadeh, A., R.T. Mehrjardi, H. Rouhipour, M. Gorji, and H.G. Rahimi. 2009. Estimating of soil erosion coverd with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal Applied Science Research 5: 505–514.Google Scholar
  2. Aldair, A.A., and W.J. Wang. 2011. Design an intelligent controller for full vehicle nonlinear active suspension systems. International Journal on Smart Sensing and Intelligent Systems 4: 224–243.Google Scholar
  3. Al-Ghandoor, A., and M. Samhouri. 2009. Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan Journal of Mechanical and Industrial Engineering 3: 69–76.Google Scholar
  4. Andersson, F.O., M. Åberg, and S.P. Jacobsson. 2000. Algorithmic approaches for studies of variable influence, contribution and selection in neural networks. Chemometrics and Intelligent Laboratory Systems 51: 61–72.CrossRefGoogle Scholar
  5. Anonymous. 2012. Annual agricultural statistics. Ministry of Jahad-e-Agricultural of Iran.Google Scholar
  6. Ayat, N.E., M. Cheriet, and C.Y. Suen. 2005. Automatic model selection for the optimization of SVM kernels. Pattern Recognition 38: 1733–1745.CrossRefGoogle Scholar
  7. Bolandnazar, E., A. Keyhani, and M. Omid. 2014. Determination of efficient and inefficient greenhouse cucumber producers using Data Envelopment Analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production 5: 1–8.Google Scholar
  8. Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, and S.L. Love. 2014. Stability and broad-sense heritability of mineral content in potato: copper and sulfur. American Journal of Potato Research 91: 618–624.CrossRefGoogle Scholar
  9. Castellano, G., and A.M. Fanelli. 2000. Variable selection using neural-network models. Neurocomputing 31: 1–13.CrossRefGoogle Scholar
  10. Chen, S.-T., P.-S. Yu, and Y.-H. Tang. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology 385: 13–22.CrossRefGoogle Scholar
  11. Cibas, T., F.F. Soulié, P. Gallinari, and S. Raudys. 1996. Variable selection with neural networks. Neurocomputing 12: 223–248.CrossRefGoogle Scholar
  12. Dieterle, F., S. Busche, and G. Gauglitz. 2003. Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements. Analytica Chimica Acta 490: 71–83.CrossRefGoogle Scholar
  13. Esengun, K., O. Gunduz, and G. Erdal. 2007. Input-output energy analysis in dry apricot production of Turkey. Energy Conversion and Management 48: 592–598.CrossRefGoogle Scholar
  14. Geoffrey, A.P. 1994. Economic forecasting in agriculture. International Journal of Forecasting 10: 81–135.CrossRefGoogle Scholar
  15. Gocić, M., S. Motamedi, S. Shamshirband, D. Petković, S. Ch, R. Hashim, and M. Arif. 2015a. Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture 113: 164–173.Google Scholar
  16. Gocić M, S. Motamedi, S. Shamshirband, D. Petković, and R. Hashim. 2015b. Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices. Stochastic Environmental Research and Risk Assessment. doi: 10.1007/s00477-014-0972-6
  17. Hosoz, M., H.M. Ertunc, and H. Bulgurcu. 2011. An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower. Expert Systems with Applications 38: 14148–14155.Google Scholar
  18. Ju, F.-Y., and W.-C. Hong. 2013. Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Applied Mathematical Modelling 37: 9643–9651.CrossRefGoogle Scholar
  19. Khoshnevisan, B., S.H. Rafiee, M. Omid, and H. Mousazade. 2014. Development of intelligent based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture. online first.Google Scholar
  20. Khoshnevisan, B., S.H. Rafiee, M. Omid, H. Mousazadeh, S. Shamshirband, and S.H. Ab Hamid. 2015. Developing a fuzzy clustering model for better energy use in farm management systems. Renewable and Sustainable Energy Reviews 48: 27–34.Google Scholar
  21. Krueger, E., S.A. Prior, D. Kurtener, H.H. Rogers, and G.B. Runion. 2011. Characterizing root distribution with adaptive neuro-fuzzy analysis. International Agrophysics 25: 93–96.Google Scholar
  22. Kurnaz, S., O. Cetin, and O. Kaynak. 2010. Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Systems with Applications 37: 1229–1234.CrossRefGoogle Scholar
  23. Kwong, C.K., T.C. Wong, and K.Y. Chan. 2009. A methodology of generating customer satisfaction models for new product development using a neuro-fuzzy approach. Expert Systems with Applications 36: 11262–11270.CrossRefGoogle Scholar
  24. Larkin, R.P., and J.M. Halloran. 2010. Management effects of disease-suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. American Journal of Potato Research 91: 429–439.CrossRefGoogle Scholar
  25. Mobtaker, H.G., A. Keyhani, A. Mohammadi, S.H. Rafiee, and A. Akram. 2010. Sensitivity analysis of energy inputs for barely production in Hamedan Province of Iran. Agriculture Ecosystems and Environment 137: 367–372.CrossRefGoogle Scholar
  26. Ozkan, B., H. Akcaoz, and C. Fert. 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy 29: 39–57.CrossRefGoogle Scholar
  27. Pahlavan, R., M. Omid, and A. Akram. 2012. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37: 171–176.CrossRefGoogle Scholar
  28. Petković, D., and Ž. Ćojbašić. 2012. Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Computing and Applications 21: 2065–2070.CrossRefGoogle Scholar
  29. Raghavendra, S.N., and P.C. Deka. 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing 19: 372–386.CrossRefGoogle Scholar
  30. Rajabi-Hamedani, S., A. Keyhani, and R. Alimardani. 2011. Energy use patterns and econometric models of grape production in Hamedan province of Iran. Energy 36: 6345–6351.CrossRefGoogle Scholar
  31. Ravi, S., M. Sudha, and P.A. Balakrishnan. 2011. Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system. Modelling and Simulation in Engineering 2011: 1–8.CrossRefGoogle Scholar
  32. Rykaczewska, K. 2015, The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. American Journal of Potato Research, online first.Google Scholar
  33. Salami, P., and H. Ahmadi. 2010. Energy inputs and outputs in a chickpea production system in Kurdistan, Iran. African Crop Science Journal 18: 51–57.Google Scholar
  34. Samavatean, N., S.H. Rafiee, H. Mobli, and A. Mohamadi. 2011. An analysis of energy use and relation between energy inputs and yield, costa and income of garlic production in Iran. Renewable Energy 36: 1808–1813.CrossRefGoogle Scholar
  35. Sivakumar, R., and K. Balu. 2010. ANFIS based distillation column control. IJCA Special Issue on Evolutionary Computation 2: 67–73.Google Scholar
  36. Sivapragasam, C., S.-Y. Liong, and M.F.K. Pasha. 2001. Rainfall and runoff forecasting with SSA-SVM approach. Journal of Hydroinformatics 3(3): 141–152.Google Scholar
  37. Sofge, D. 2002. Using genetic algorithm based variable selection to improve neural network models for real-world systems, 16–19. Las Vegas: Proceedings of theInternational Conference on Machine Learning and Applications.Google Scholar
  38. Taherri-Garavand, A., A. Asakereh, and K. Haghani. 2010. Energy elevation and economic analysis of canola production in Iran a case study: Mazandaran province. International Journal of Environmental Sciences 1: 1–10.Google Scholar
  39. Tian, L., and C. Collins. 2005. Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15: 1305–1320.CrossRefGoogle Scholar
  40. Wang, T., H. Huang, S. Tian, and J. Xu. 2010. Feature selection for SVM via optimization of kernel polarization with Gaussian ARD kernels. Expert Systems with Applications 37: 6663–6668.CrossRefGoogle Scholar
  41. Yang, H., K. Huang, I. King, and M.R. Lyu. 2009. Localized support vector regression for time series prediction. Neurocomputing 72: 2659–2669.CrossRefGoogle Scholar
  42. Yang, X., L. Tan, and L. He. 2014. A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140: 41–52.CrossRefGoogle Scholar
  43. Yousefi, M., B. Khoshnevisan, S. Shamshirband, S. Motamedi, M.H.N Md. Nasir, M. Arif, and R. Ahmad. Support vector regression methodology for prediction of output energy in rice production. Stochastic Environmental Research and Risk Assessment. doi: 10.1007/s00477-015-1055-z
  44. Zangeneh, M., Omid, M., Akram, A. A comparative study between parametric and artificial neural networks approaches for economical assessment of potato production in Iran. Spanish Journal of Agricultural Research 9: 661–671Google Scholar
  45. Zhang, L., W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li. 2013. Iterated time series prediction with multiple support vector regression models. Neurocomputing 99: 411–422.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2015

Authors and Affiliations

  • Sara Rajabi Hamedani
    • 1
  • Misbah Liaqat
    • 2
  • Shahaboddin Shamshirband
    • 2
    Email author
  • Othman Saleh Al-Razgan
    • 3
  • Eiman Tamah Al-Shammari
    • 4
  • Dalibor Petković
    • 5
  1. 1.Department of Agricultural SciencePayame Noor UniversityTehranIran
  2. 2.Department of Computer System and Information Technology, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  3. 3.Kuwait Institute for Scientific Research (KISR)Kuwait CityKuwait
  4. 4.Department of Information ScienceCollege of Computing Sciences and Engineering, Kuwait UniversityKuwait CityKuwait
  5. 5.Faculty of Mechanical Engineering, Department for MechatronicsUniversity of NišNišSerbia

Personalised recommendations