Advertisement

The Botanical Review

, Volume 84, Issue 2, pp 108–155 | Cite as

Studies on Ectomycorrhiza: An Appraisal

  • Jitender Kumar
  • N. S. Atri
Review

Abstract

Ectomycorrhizal (ECM) fungi are obligate symbionts of dominant vascular plants, liverworts and hornworts. There are reports of about 20,000 to 25,000 ECM fungi that promote plant growth by facilitating enhanced water and nutrient absorption, and provide tolerance to environmental stresses. These below-ground fungi play a key role in terrestrial ecosystems as they regulate plant diversity, nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Because ECM fungi are obligate root symbionts, host plant can have a strong effect on ECM species richness and community composition. The biogeographic pattern and detailed functioning and regulation of these mycorrhizosphere processes are still poorly understood and require detailed study. More recent researches have placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. Over the years the main focus in ECM research has been on the study of diversity and specificity of ECM strains, the role of ECM in regeneration of degraded ecosystem, the growth and establishment of seedlings through nutrient acquisition and the mediation of plant responses to various types of stress. In this review, recent progresses in ectomycorrhizal biology are presented, especially the potential role of ECM symbioses in resistance or tolerance to various biotic and abiotic stresses, and in maintinance of plant diversity for proper ecosystem functioning.

Keywords

Ectomycorrhizal symbiosis Ecosystem Evolution ECM diversity Afforestation 

Notes

Acknowledgements

We are grateful to Mélanie Roy and another anonymous reviewer for their useful comments on the manuscript. Thanks are due to Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance under CSIR-JRF fellowship scheme to the first author. To University Grants Commission we are indebted for giving liberal grants to the department under SAP programme and to Department of Biotechnology, Government of India, for grant under IPLS programme.

Literature Cited

  1. Abarenkov, K., R.H. Nilsson, K.H. Larsson, I.J. Alexander, U. Eberhardt, S. Erland et al. 2010. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytologist 186: 281–285.  https://doi.org/10.1111/j.1469-8137.2009.03160.x PubMedCrossRefGoogle Scholar
  2. Abuzinadah, R.A., & D.J. Read. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103: 481-493.  https://doi.org/10.1111/j.1469-8137.1986.tb02886.x CrossRefGoogle Scholar
  3. Adeleke, R.A., T.E. Cloete, A. Bertrand & D.P. Khasa. 2012. Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22: 535–544.  https://doi.org/10.1007/s00572-012-0431-5 PubMedCrossRefGoogle Scholar
  4. Adriaensen, K., D. van der Lelie, A. Van Laere, J. Vangronsveld & J.V. Colpaert. 2004. A zinc-adapted fungus protects pines from zinc stress. New Phytologist 161:549–555.  https://doi.org/10.1046/j.1469-8137.2003.00941.x CrossRefGoogle Scholar
  5. ———, T. Vrålstad, J. P. Noben, J. Vangronsveld & J. V. Colpaert. 2005. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology 71: 7279–7284.  https://doi.org/10.1128/AEM.71.11.7279-7284.2005
  6. ———, J. Vangronsveld, & J.V. Colpaert. 2006. Zinc tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553–558.  https://doi.org/10.1007/s00572-006-0072-7
  7. Agerer, R. 1986. Studies on ectomycorrhizae III. Mycorrhizae formed by four fungi in the genera Lactarius and Russula on spruce. Mycotaxon 27: 1-59.Google Scholar
  8. ———. 1987-2012. Colour atlas of ectomycorrhizae. 1st – 15th ed.-Einhorn-Verlag. Schwäbisch Gmünd, Germany.Google Scholar
  9. ———. 1999. Anatomical charecterstics of identified ectomycorrhizas: an attempt towards a natural classification. In: A.Verma, B. Hock (Eds.), mycorrhiza. Springer Verlag, Berlin, pp. 685-734.Google Scholar
  10. ———. 2001. Exploration types of ectomycorrhizae- A proposal to classify ectomycorrhizal mycelial systems according to their paterns of differentiation and putative ecological importance. Mycorrhiza 11: 107-114.CrossRefGoogle Scholar
  11. ——— . 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5: 67-107.  https://doi.org/10.1007/s11557-006-0505-x CrossRefGoogle Scholar
  12. ——— & G. Rambold. 2004-2016. DEEMY-An Information System for Characterization and Determination of Ectomycorrhizae. www.deemy.de - München, Germany.
  13. Ahangar, M.A., G.H. Dar & Z.A. Bhat. 2012. Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Annals of Forest Research 55(2): 217-227.Google Scholar
  14. Ahonen-Jonnarth, U. & R.D. Finlay. 2001. Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 129-138.  https://doi.org/10.1023/A:1012764902915 CrossRefGoogle Scholar
  15. ———, P.A.W. van Hees, U. Lundström & R.D. Finlay. 2000. Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris exposed to elevated concentrations of aluminium and heavy metals. New Phytologist 146: 557-567.  https://doi.org/10.1046/j.1469-8137.2000.00653.x
  16. ———, A. Göransson & R.D. Finlay. 2003. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Tree Physiology 23: 157–167.  https://doi.org/10.1093/treephys/23.3.157
  17. Alberton, O., D. Aguiar, R.M.T. Gimenes & R. Carrenho. 2014. Meta-analysis for responses of eucalyptus and pine inoculated with ectomycorrhizal fungi in Brazil. Journal of Food Agriculture and Environment 12: 1159–1163.Google Scholar
  18. Alexander, I.J. 2006. Ectomycorrhizas – out of Africa? New Phytologist 172: 589–591.PubMedCrossRefGoogle Scholar
  19. ——— & M.A. Selosse. 2009. Mycorrhizas in tropical forests: a neglected research imperative. New Phytologist 182 (1): 14-16.  https://doi.org/10.1111/j.1469-8137.2009.02798.x
  20. Allen, M.F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6: 291–297.  https://doi.org/10.2136/vzj2006.0068 CrossRefGoogle Scholar
  21. Alvez, L., V.L. Oliveira & G.N.S. Filho. 2010. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Brazilian Journal of Microbiology 41: 676–684.  https://doi.org/10.1590/s1517-83822010000300018 CrossRefGoogle Scholar
  22. Andersson, S., P. Jensén & B. Söderström. 1996. Effects of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat. New Phytologist 133: 695-704.  https://doi.org/10.1111/j.1469-8137.1996.tb01938.x CrossRefGoogle Scholar
  23. Andrew, C. & E.A. Lilleskov. 2009. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecology Letters 12(8): 813–822.  https://doi.org/10.1111/j.1461-0248.2009.01334.x PubMedCrossRefGoogle Scholar
  24. ——— & ———. 2014. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy. Mycorrhiza 24: 581–593.  https://doi.org/10.1007/s00572-014-0577-4 PubMedCrossRefGoogle Scholar
  25. Arnebrant, K. 1994. Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15.  https://doi.org/10.1007/BF00204014 CrossRefGoogle Scholar
  26. Aroca, R., A. Bago, M. Sutka, J.A. Paz, C. Cano, G. Amodeo et al. 2009. Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt- stressed and nonstressed mycelium. Molecular Plant-Microbe Interaction 22(9): 1169-1178.  https://doi.org/10.1094/MPMI-22-9-1169 CrossRefGoogle Scholar
  27. Ashford, A.E., P.A. Vesk, D.A. Orlovich, A.L. Markovina & W.G. Allaway. 1999. Dispersed polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genetics and Biology 28: 21-33.  https://doi.org/10.1006/fgbi.1999.1140.PubMedCrossRefGoogle Scholar
  28. Atri, N.S. & S.S. Saini. 1986. Further contribution on the studies of North-West Himalyan Russulaceae. Geobios new reports 5: 100-105.Google Scholar
  29. ———, ——— & M.K. Saini. 1997. Studies on genus Russula Pers. from North Western Himalayas. Mushroom Research 6(1): 1-6.Google Scholar
  30. Averill, C., B.L. Turner & A.C. Finzi. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545.  https://doi.org/10.1038/nature12901 PubMedCrossRefGoogle Scholar
  31. Avis, P.G. 2012. Ectomycorrhizal iconoclasts: the ITSrDNA diversity and nitrophilic tendencies of fetid Russula. Mycologia 104 (5): 998–1007.  https://doi.org/10.3852/11-399 PubMedCrossRefGoogle Scholar
  32. ———, G.M. Mueller & J. Lussenhop. 2008. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition. New Phytologist 179: 472–483.  https://doi.org/10.1111/j.1469-8137.2008.02491.x
  33. Azul, A.M., J. Nunes, I. Ferreira, A.S. Coelho, P. Veríssimo, J. Trovão, A. Campos, P. Castro & H. Freitas. 2014. Valuing native ectomycorrhizal fungi as a mediterranean forestry component for sustainable and innovative solutions. Botany 92: 161–171.  https://doi.org/10.1139/cjb-2013-0170 CrossRefGoogle Scholar
  34. Bâ, A.M., K.B. Sanon & R. Duponnois. 2002. Influence of ectomycorrhizal inoculation Afzelia quanzensis Welw. seedlings in a nutrient-deficient soil. Forest Ecology and Management 161:215–219.  https://doi.org/10.1016/S0378-1127(01)00484-4 CrossRefGoogle Scholar
  35. ———, R. Duponnois, M. Diabaté & B. Dreyfus. 2011. Les champignons ectomycorhiziens des arbres forestiers en Afrique de l’Ouest. Institute of Research for Development, Montpellier, pp. 252.Google Scholar
  36. ———, ———, R. B. Moyersoen & A.G. Diédhiou. 2012. Ectomycorrhizal symbiosis of tropical African trees. Mycorrhiza 22:1–29.  https://doi.org/10.1007/s00572-011-0415-x
  37. Bahram, M., S. Põlme, U. Kõljalg & L. Tedersoo. 2011. A single European aspen (Populus tremula) tree individual may potentially harbor dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiology Ecology 75: 313–320.  https://doi.org/10.1111/j.1574-6941.2010.01000.x PubMedCrossRefGoogle Scholar
  38. ———, U Kõljalg, P. Kohout, S. Mirshahvaladi & L. Tedersoo. 2013. Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23: 11–19.  https://doi.org/10.1007/s00572-012-0445-z
  39. Barrow, N.J. 1984. Modelling the effects of pH on phosphate sorption by soils. Journal of Soil Science 35(2): 283–297.  https://doi.org/10.1111/j.1365-2389.1984.tb00283.x CrossRefGoogle Scholar
  40. Becerra, A.G. & M.R. Zak. 2011. The ectomycorrhizal symbiosis in South America: Morphology, Colonisation and Diversity. In: M. Rai & A. Verma (Eds.), Diversity and Biotechnology of ectomycorrhizae, springer-verlag Berlin Heidelberg, pp. 19-41.Google Scholar
  41. Bendangmenla & T. Ajungla. 2014. Field performance of Schima wallichii (dc.) korth. seedlings inoculated with ectomycorrhizal fungi. International Journal of Recent Scientific Research 5(4): 970-973.Google Scholar
  42. Benito, B. & M. Gonzalez-Guerrero. 2014. Unravelling potassium nutrition in ectomycorrhizal associations. New Phytologist 201: 707–709.  https://doi.org/10.1111/nph.12659 PubMedCrossRefGoogle Scholar
  43. Benjdia, M., E. Rikirsch, T. Müller, M. Morel, C. Corratgé, S. Zimmermann, M. Chalot, W.B. Frommer & D. Wipf. 2006. Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytologist 170: 401–410.  https://doi.org/10.1111/j.1469-8137.2006.01672.x PubMedCrossRefGoogle Scholar
  44. Bent, E., P. Kiekel, R. Brenton & D.L. Taylor. 2011. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Applied and Environmental Microbiology 77: 3351–3359.  https://doi.org/10.1128/AEM.02575-10 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Benucci, G.M.N., C. Lefevre & G. Bonito. 2016. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum). Mycorrhiza 26: 367–376.  https://doi.org/10.1007/s00572-015-0677-9 PubMedCrossRefGoogle Scholar
  46. Berbee, M.L. & J.W. Taylor. 1993. Dating the evolutionary radiations of the true fungi. Canadian Journal of Botany 71: 1114–1127.  https://doi.org/10.1139/b93-131 CrossRefGoogle Scholar
  47. ——— & ———. 2001. Fungal molecular evolution: gene trees and geologic time, in: D. McLaughlin, E. McLaughlin, & P. Lemke (Eds.), The Mycota. Springer-Verlag, Berlin, pp. 229–245.Google Scholar
  48. ——— & ———. 2010. Dating the molecular clock in fungi – how close are we? fungal biology reviews 24: 1–16.  https://doi.org/10.1016/j.fbr.2010.03.001 CrossRefGoogle Scholar
  49. Bhatt, R.P. & T.N. Lakhanpal. 1990. Fleshy fungi of North Western Himalayas V. Indian Phytopathology 43: 156- 164.Google Scholar
  50. Bidartondo, M.I. & J.G. Duckett. 2010. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proceedings of the Royal Society B. 277: 485–492.  https://doi.org/10.1098/rspb.2009.1458 PubMedCrossRefGoogle Scholar
  51. ———, T.D. Bruns, M. Weiss, C. Sérgio & D.J. Read. 2003. Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society B. 270: 835–842.  https://doi.org/10.1098/rspb.2002.2299
  52. Blom, J.M., A. Vannini, A.M. Vettraino, M.D. Hale & D.L. Godbold. 2009. Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20: 25–38.  https://doi.org/10.1007/s00572-009-0256-z PubMedCrossRefGoogle Scholar
  53. Bodeker, I.T.M., K.E. Clemmensen, W. de Boer, F. Martin, A. Olson & B.D. Lindahl. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist 203: 245–256.  https://doi.org/10.1111/nph.12791 PubMedCrossRefGoogle Scholar
  54. Bois, G., Y. Piché, M.Y.P. Fung & D.P. Khasa. 2005. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15: 149–158.  https://doi.org/10.1007/s00572-004-0315-4 PubMedCrossRefGoogle Scholar
  55. Bonfante, P. & A. Genre. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communication 1: 48.  https://doi.org/10.1038/ncomms1046 CrossRefGoogle Scholar
  56. Bougher, N.L., T.S. Grove & N. Malajczuk. 1990. Growth and phosphorus acquisition of Karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytologist 114: 77-85.  https://doi.org/10.1111/j.1469-8137.199 0.tb 00376.x CrossRefGoogle Scholar
  57. Brandes, B., D.L. Godbold, A.J. Kuhn & G. Jentschke. 1998. Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytologist 140: 735–743.  https://doi.org/10.1046/j.1469-8137.1998.00313.x CrossRefGoogle Scholar
  58. Branzanti, M.B., E. Rocca & A. Pisi. 1999. Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9: 103-109.  https://doi.org/10.1007/s005720050007 CrossRefGoogle Scholar
  59. Breda, N., R. Huc, A. Granier & E. Dreyer. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 6: 625–644.  https://doi.org/10.1051/forest:2006042 CrossRefGoogle Scholar
  60. Browning, M.H.R. & R.D. Whitney. 1993. “Infection of containerized jack pine and black spruce by Laccaria species and Thelephora terrestris and seedlings survival and growth after out planting”. Canadian Journal of Forest Research 23: 330-333.  https://doi.org/10.1139/x93-046 CrossRefGoogle Scholar
  61. Brulé, C., P. Frey-Klett, J.C. Pierrat, S. Courrier, F. Gerard, M.C. Lemoine, J.L. Rousselet, G. Sommer & J. Garbaye. 2001. Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biology and Biochemistry 33: 1683-1694.  https://doi.org/10.1016/S0038-0717(01)00090-6 CrossRefGoogle Scholar
  62. Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275-304.  https://doi.org/10.1046/j.1469-8137.2002.00397.x CrossRefGoogle Scholar
  63. ———. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 37–77.  https://doi.org/10.1007/s11104-008-9877-9 CrossRefGoogle Scholar
  64. Bruns, T.D. 1995. Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63–73.  https://doi.org/10.1007/BF02183055 CrossRefGoogle Scholar
  65. ———, M.I. Bidartondo & D.L. Taylor. 2002. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integrative and Comparative Biology 42: 352–359.  https://doi.org/10.1093/icb/42.2.352
  66. Bucher, M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173: 11–26.  https://doi.org/10.1111/j.1469-8137.2006.01935.x PubMedCrossRefGoogle Scholar
  67. Bücking, H. & W. Heyser. 2001. Microrautoradiographic localization of phosphate and carbohydrate in mycorrhizal roots of Populus tremela x Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiology 21:101–107.PubMedCrossRefGoogle Scholar
  68. ——— & ———. 2003. Uptake and transfer of nutrients in ectomycorrhizal Associations: Interactions between Photosynthesis and Phosphate Nutrition. Mycorrhiza 13(2): 59-68.  https://doi.org/10.1007/s00572-002-0196-3 PubMedCrossRefGoogle Scholar
  69. Buee, M., D. Vairelles & J. Garbaye. 2005. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15: 235– 245.  https://doi.org/10.1007/s00572-004-0313-6 PubMedCrossRefGoogle Scholar
  70. Cairney, J.W.G. 2011. Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344: 51–71.  https://doi.org/10.1007/s11104-011-0731-0 CrossRefGoogle Scholar
  71. ———. 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry 47: 198–208.  https://doi.org/10.1016/j.soilbio.2011.12.029 CrossRefGoogle Scholar
  72. Calvaruso, C., M.P. Turpault, E. Leclerc & P. Frey-Klett. 2007. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecology 54: 567–577.  https://doi.org/10.1007/ s002 48-007-9260-z PubMedCrossRefGoogle Scholar
  73. Camilo-Alves, C.S.P., M.I.E. Clara & N.M.C.A. Ribeiro. 2013. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research 132: 411–432.  https://doi.org/10.1007/s10342-013-0688-z CrossRefGoogle Scholar
  74. Canton, G.C., A.A. Bertolazi, A.J. Cogo, F.J. Eutriópio, J. Melo, S.B. de Souza et al. 2016. Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis. Mycorrhiza 26: 475–487.  https://doi.org/10.1007/s00572-016-0686-3 PubMedCrossRefGoogle Scholar
  75. Casieri, L., N.A. Lahmidi, J. Doidy, C. Veneault-Fourrey, A. Migeon, L. Bonneau, P.E. Courty, K. Garcia, M. Charbonnier & A. Delteil. 2013. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23: 597–625.  https://doi.org/10.1007/s00572-013-0496-9 PubMedCrossRefGoogle Scholar
  76. Castellano, M.A. & R. Molina. 1989. Mycorrhizae. In: T.D. Landis, R.W. Tinus, S.E. McDonald, J.P. Barnett (Eds.), The Biological Components: Nursery Pests and Mycorrhizae – The Container Tree Nursery Manual, US Department of Agriculture, Forest Service, Washington, DC, USA, pp. 101–167.Google Scholar
  77. Chambers, S.M., P.G. Williams, R.D. Seppelt, J.W.G. Cairney. 1999. Molecular identification of Hymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycological Research 103:286–288.  https://doi.org/10.1017/S0953756298007217 CrossRefGoogle Scholar
  78. Chen, Y.L., M.C. Brundrett & B. Dell. 2000. Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone and in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytologist 146: 545–556.  https://doi.org/10.1046/j.1469-8137.2000.00663.x CrossRefGoogle Scholar
  79. ———, K. Nara, Z. Wen, L. Shi, Y. Xia, Z. Shen & C. Lian. 2015. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Mycorrhiza 25: 561–571.  https://doi.org/10.1007/s00572-015-0629-4
  80. Colpaert, J.V. & J.A. Van Assche. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist 123: 325-333.  https://doi.org/10.1111/j.1469-8137.1993.tb03742.x CrossRefGoogle Scholar
  81. ———, K.K. Van Tichelen, J.A. Van Assche & A. Van Laere. 1999. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytologist 143: 589–597.  https://doi.org/10.1046/j.1469-8137.1999.0047.x
  82. ———, K. Adriaensen, L.A.H. Muller, M. Lambaerts, C. Faes, R. Carleer & J. Vangronsveld. 2005. Element profiles and growth in Zn-sensitive and Zn-resistant Suilloid fungi. Mycorrhiza 15: 628–634.  https://doi.org/10.1007/s00572-005-0009-6
  83. ———, J.H.L. Wevers, E. Krznaric & K. Adriaensen. 2011. How metal-tolerant ecotypes of ecto- mycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68: 17–24.  https://doi.org/10.1007/s13595-010-0003-9
  84. Corcobado, T., E. Cubera, G. Moreno, & A. Solla. 2013a. Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agriculture and Forest Meteorology 169: 92–99.  https://doi.org/10.1016/j.agrformet.2012.09.017 CrossRefGoogle Scholar
  85. ———, A. Solla, M.A. Madeira & G. Moreno. 2013b. Combined effects of soil properties and Phytophthora cinnamomi infections on Quercus ilex decline. Plant Soil 373: 403–413.  https://doi.org/10.1007/s11104-013-1804-z
  86. ———, G. Moreno, A.M. Azul & A. Solla. 2015. Seasonal variations of ectomycorrhizal communities in declining Quercus ilex forests: interactions with topography, tree health status and Phytophthora cinnamomi infections. Forestry 88: 257 –266.  https://doi.org/10.1093/ forestry/ cpu056
  87. Corrales, A., A.E. Arnold, A. Ferrer, B.L. Turner & J.W. Dalling. 2016. Variationin ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1–17.  https://doi.org/10.1007/s00572-015-0641-8 PubMedCrossRefGoogle Scholar
  88. Courty, P.E., N. Breda & J. Garbaye. 2007. Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biology and Biochemistry 39: 1655–1663.  https://doi.org/10.1016/j.soilbio.2007.01.017 CrossRefGoogle Scholar
  89. Couturier, C., B. Montanini, F. Martin, A. Brun, D. Blaudez & M. Chalot. 2007. The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist 174: 137–150.  https://doi.org/10.1111/j.1469-8137.2007.01992.x PubMedCrossRefGoogle Scholar
  90. Cox, F., N. Barsoum, E.A. Lilleskov & M.I. Bidartondo. 2010. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecology Letter 13: 1103–1113.  https://doi.org/10.1111/j.1461-0248.2010.01494.x CrossRefGoogle Scholar
  91. Crane, S., T. Barkay & J. Dighton. 2010. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biology 114: 873-880.  https://doi.org/10.1016/j.funbio.2010.08.004.PubMedCrossRefGoogle Scholar
  92. Cullings, K.W., T.M. Szaro & T.D. Bruns. 1996. Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379, 63–67.  https://doi.org/10.1038/379063a0 CrossRefGoogle Scholar
  93. Cumming, J.R. & L.H. Weinstein. 1990. Nitrogen source effects on Al toxicity in nonmycorrhizal and myconhizal pitch pine (Pinus rigida) seedlings Growth and nutrition. Canadian Journal of Botany 68: 264-2652.  https://doi.org/10.1139/b90-334 CrossRefGoogle Scholar
  94. ——— . 1996. Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Tree Physiology 16: 977- 983.  https://doi.org/10.1093/treephys/16.11-12.977 PubMedCrossRefGoogle Scholar
  95. ———, C. Zawaski, S. Desai & F.R. Collart. 2015. Phosphorus disequilibrium in the tripartite plant ectomycorrhiza-plant growth promoting rhizobacterial association. Journal of Soil Science and Plant Nutrition 15 (2): 464-485.  https://doi.org/10.4067/S0718-95162015005000040
  96. Daghino, S., E. Martino & S. Perotto. 2016. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza 26: 263–274.  https://doi.org/10.1007/s00572-015-0675-y PubMedCrossRefGoogle Scholar
  97. Dahlberg, A. 2001. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytologist 150: 555–562.  https://doi.org/10.1046/j.1469-8137.2001.00142.x CrossRefGoogle Scholar
  98. ———. 2002. Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fennica 36: 69–80.  https://doi.org/10.14214/sf.551 CrossRefGoogle Scholar
  99. Danielsen, L., G. Lohaus, A. Sirrenberg, P. Karlovsky, C. Bastien, G. Pilate & A. Polle. 2013. Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis. PLoS ONE 8(3): e59207.  https://doi.org/10.1371/journal.pone.0059207 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Danielson, R.M. & S. Visser. 1989. Host response to inoculation and behaviour of induced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Canadian Journal of Forest Research 19: 1412–1421.CrossRefGoogle Scholar
  101. Dar, G.H., M.A. Beig & N.A. Ganai. 2007. Effect of source and inoculum load of ectomycorrhizae on the growth and biomass of containerized kail pine (Pinus wallichiana) seedlings. Applied Biological Research 9:19-28.Google Scholar
  102. de Campos, M.C., S.J. Pearse, R.S. Oliveira, & H. Lambers. 2013. Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Annals of Botany 111: 801–809.  https://doi.org/10.1093/aob/mct035 PubMedPubMedCentralCrossRefGoogle Scholar
  103. DeBellis, T., G. Kernaghan, R. Bradley & P. Widden. 2006. Relationships between stand composition and ectomycorrhizal community structure in boreal mixed-wood forests. Microbial Ecology 52:114-126.  https://doi.org/10.1007/s00248-006-9038-8 PubMedCrossRefGoogle Scholar
  104. Desai, S., D. Naik & J.R. Cumming. 2014. The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides. Mycorrhiza 24: 369–382.  https://doi.org/10.1007/s00572-013-0548-1 PubMedCrossRefGoogle Scholar
  105. Deveau, A., S. Antony-Babu, F. Le Tacon, C. Robin, P. Frey-Klett & S. Uroz. 2016. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorhizosphere during ascocarp development. Mycorrhiza 26: 389–399.  https://doi.org/10.1007/s00572-015-0679-7 PubMedCrossRefGoogle Scholar
  106. Diagne, N., J. Thioulouse, H. Sanguin, Y. Prin, T. Krasova-Wade & S. Sylla et al. 2013. Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biology and Biochemistry 57: 468–476.  https://doi.org/10.1016/j.soilbio. 2012.08.030
  107. Dickie, I.A. 2007. Host preference, niches and fungal diversity. New Phytologist 174: 230–233.  https://doi.org/10.1111/j.1469-8137.2007.02055.x PubMedCrossRefGoogle Scholar
  108. ———, S.J. Richardson & S.K. Wiser. 2009. Ectomycorrhizal fungal communities in two temperate Nothofagus rainforests respond to changes in soil chemistry after small-scale timber harvesting. Canadian Journal of Forest Research 39: 1069–1079.  https://doi.org/10.1139/X09-036
  109. ———, N. Bolstridge, J.A. Cooper & D.A. Peltzer. 2010. Co-invasion by Pinus and its mycorrhizal fungi. New Phytologist 187: 475–484.  https://doi.org/10.1111/j.1469-8137.2010.03277.x
  110. ———, L.B. Martínez-García, N. Koele, G-A. Grelet, J.M. Tylianakis, D.A. Peltzer & S.J. Richardson. 2013. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367: 11–39.  https://doi.org/10.1007/s11104-013-1609-0
  111. Diédhiou, A.G., M.A. Selosse, A. Galiana, M. Diabate, B. Dreyfus, A.M. Ba, S. Miana de Faria, & G. Bena. 2010. Multihost ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environmental Microbiology 12: 2219–2232.  https://doi.org/10.1111/j.1462-2920.2010.02183.x PubMedCrossRefGoogle Scholar
  112. ———, H. Christelle, M. Ebenye, M.A. Selosse, N. Onguene & A.M. Bâ. 2014. Diversity and community structure of ectomycorrhizal fungi in mixed and monodominant African tropical rainforest. In: A.M. Bâ, K.L. McGuire, A.G. Diédhiou (Eds.), Ectomycorrhizal symbioses in tropical and neotropical forests. CRC Press, pp 1–18.Google Scholar
  113. Dietz, S., J. von Bülow, E. Beitz & U. Nehls. 2011. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytologist 190: 927–940.  https://doi.org/10.1111/j.1469-8137.2011.03651.x PubMedCrossRefGoogle Scholar
  114. Domínguez Núñez, J.A., J. Selva Serrano, J.A. Rodríguez Barreal & J.A. Saiz de Omeñaca González. 2006. The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecology and Management 231: 226–233.  https://doi.org/10.1016/j.foreco.2006.05.052 CrossRefGoogle Scholar
  115. ———, R.G. Planelles, J.A. Rodriguez Barreal & J.A. Saiz de Omenaca Gonzalez. 2008. The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings. New Forest 2: 159–171.  https://doi.org/10.1007/s11056-007-9069-0
  116. ———, A. Martin, A. Anriquez & A. Albanesi. 2012. The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22: 429–436.  https://doi.org/10.1007/s00572-01 1-0420-0
  117. Druebert, C., C. Lang, K. Valtanen & A. Polle. 2009. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell and Environment 32(8): 992-1003.  https://doi.org/10.1111/j.1365-3040.2009.01983.x CrossRefGoogle Scholar
  118. Duchesne, L.C., R.L. Peterson & B.E. Ellis. 1988. Pine root exudate stimulates antibiotic synthesis by the ectomycorrhizal fungi Paxillus involutus. New Phytologist 108: 471-476.  https://doi.org/10.1111/j.14 69-8137.1988.tb04188.x CrossRefGoogle Scholar
  119. Duponnois, R. 2006. Bacteria helping mycorrhiza development. In: K.G. Mukerji & J. Manoharachary (Eds.), Soil Biology. Springer- Verlag, Berlin, Germany.Google Scholar
  120. ——— & J. Garbaye. 1991. Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Annals of Science 48: 239–251.  https://doi.org/10.1051/forest:19910301
  121. Eastwood, D.C., D. Floudas, M. Binder, A. Majcherczyk, P. Schneider, A. Aerts, F.O. Asiegbu, S.E. Baker, K. Barry, M. Bendiksby et al. 2011. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333: 762–765.  https://doi.org/10.1126/science.1205411 PubMedCrossRefGoogle Scholar
  122. Erlandson, R.S., J.A. Savage, J.M. Cavender-Bares & K.G. Peay. 2016. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiology Ecology 92(1).  https://doi.org/10.1093/femsec/fiv148
  123. Facelli, E., T. Duan, S.E. Smith, H.M. Christophersen, J.M. Facelli & F.A. Smith. 2014. Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. Plant Cell and Environment 37: 1382–1392.  https://doi.org/10.1111/pce.12237 CrossRefGoogle Scholar
  124. Felten, J., A. Kohler, E. Morin, R.P. Bhalerao, K. Palme, F. Martin, F.A. Ditengou & V. Legué. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiology 151: 1991–2005.  https://doi.org/10.1104/pp.109.147231 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Finlay, R.D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59: 1115–1128.  https://doi.org/10.1093/jxb/ern059 PubMedCrossRefGoogle Scholar
  126. ——— & B. Söderström. 1992. Mycorrhiza and carbon flow to the soil. In: Allen, M.F. (ed.), Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, Routledge, pp 134–162.Google Scholar
  127. ———, H. Ek, G. Odham & B. Soderstrom. 1988. Mycelial uptake, translocation and assimilation of nitrogen from 15N labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytologist 110: 59–66.  https://doi.org/10.1111/j.1469-8137.1988.tb00237.x
  128. Floudas, D., M. Binder, R. Riley, K. Barry, R.A. Blanchette, B. Henrissat, A.T. Martinez, R. Otillar, J.W. Spatafora, J.S. Yadav et al. 2012. The Paleozoic origin of enzymatic lignin decompositionnre constructed from 31fungal genomes. Science 336: 1715–1719.  https://doi.org/10.1126/science.1221748 PubMedCrossRefGoogle Scholar
  129. Fomina, M., J.M. Charnock, S. Hillier, I.J. Alexander, & G.M. Gadd. 2006. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microbial Ecology 52(2): 322-333.  https://doi.org/10.1007/s00248-006-9004-5 PubMedCrossRefGoogle Scholar
  130. Fortin, J.A. 1966. Synthesis of mycorrhizae on explants of the root hypocotyls of Pinus sylvestris L. Canadian Journal of Botany 44: 1087-1092.  https://doi.org/10.1139/b66-116 CrossRefGoogle Scholar
  131. Foster, R.C. & G.C. Marks. 1966. The fine structure of the mycorrhizas of Pinus radiata. Australian Journal of Biological Sciences 19(6): 1027-1038.  https://doi.org/10.1071/BI9661027 CrossRefGoogle Scholar
  132. Frank, B. 1885. Ueber die auf Wurzelsymbiose beruhende Ernährung gewiser Bäume durch unterirdishe Pilze. Berichte der Deutschen Botanischen Gesellschaft 3: 128–145.Google Scholar
  133. Frey, B., K. Zierold & I. Brunner. 2000. Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies–Hebeloma crustuliniforme ectomycorrhizas. Plant Cell and Environment 23(11): 1257–1265.  https://doi.org/10.1046/j. 1365-3040.2000.00637.x CrossRefGoogle Scholar
  134. Frey-Klett, P., J. Garbaye & M. Tarkka. 2007. The mycorrhiza helper bacteria revisited. New Phytologist 176: 22–36.  https://doi.org/10.1111/j.1469-8137.2007.02191.x PubMedCrossRefGoogle Scholar
  135. Gandini, A.M.M., P.H. Grazziotti, M.J. Rossi, D.C.F.S. Grazziotti, E.M.M. Gandini, E. de Barros Silva & C. Ragonezi. 2015. Growth and nutrition of eucalypt rooted cuttings promoted by ectomycorrhizal fungi in commercial nurseries. The Revista Brasileira de Ciência do Solo 39: 1554-1565.  https://doi.org/10.1590/01000683rbcs20150075 CrossRefGoogle Scholar
  136. Gao, Q. & Z.L. Yang. 2010. Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20 (4): 281–287.  https://doi.org/10.1007/s00572-009- 0287-5 PubMedCrossRefGoogle Scholar
  137. Gao, C., N.N. Shi, Y.X. Liu, Y. Zheng, Q. Ding, X.C. Mi, K.P. Ma, T. Wubet, F. Buscot & L.D. Guo. 2014. Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo et al. (2014). Molecular Ecology 23(5): 996-999.  https://doi.org/10.1111/mec.12659 PubMedCrossRefGoogle Scholar
  138. Garcia, K., A. Delteil, G. Conejero, A. Becquer, C. Plassard, H. Sentenac & S. Zimmermann. 2014. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytologist 201: 951–960.  https://doi.org/10.1111/nph.12603 PubMedCrossRefGoogle Scholar
  139. Garcia, M., O. Jane, E. Smith, E. Daniel, L. Luoma, L. Melanie & D. Jones. 2016. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. Mycorrhiza 26: 275–286.  https://doi.org/10.1007/s00572-015-0668-x PubMedCrossRefGoogle Scholar
  140. Gardes, M. & T.D. Bruns. 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above and below ground views. Canadian Journal of Botany 74: 1572–1583.  https://doi.org/10.1139/b96-190 CrossRefGoogle Scholar
  141. Gehring, C.A., R.C. Mueller & T.G. Whitham. 2006. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149: 158–164.  https://doi.org/10.1007/s00442-006-0437-9 PubMedCrossRefGoogle Scholar
  142. Geml, J., N. Pastor, L. Fernandez, S. Pacheco, T.A. Semenova, A.G. Becerra, C.Y. Wicaksono, E.R. Nouhra. 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology 23: 2452–2472.  https://doi.org/10.1111/mec.12765 PubMedCrossRefGoogle Scholar
  143. Grelet, G.-A., D. Johnson, E. Paterson, I.C. Anderson & I.J. Alexander. 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytologist 182: 359-366.  https://doi.org/10.1111/j.14698137.2009.0281 3.x PubMedCrossRefGoogle Scholar
  144. Grulich, V. 2012. Red List of vascular plants of the Czech Republic: 3rd edition. Preslia 84: 631–645.Google Scholar
  145. Gryta, H., F. Carriconde, J.Y. Charcosset, P. Jargeat, & M. Gardes. 2006. Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar under differing environmental conditions. Environmental Microbiology 8(5): 773-786.  https://doi.org/10.1111/j.1462-2920.2005.00957.x PubMedCrossRefGoogle Scholar
  146. Guenoune, D., S. Galili, D.A. Phillips, H. Volpin, I. Chet, Y. Okon & Kapulnik. 2001. The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Science 160: 925–932.  https://doi.org/10.1016/S0168-9452(01) 00329-6 PubMedCrossRefGoogle Scholar
  147. Guidot, A., M.C. Verner, J.C. Debaud & R. Marmeisse. 2005. Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15(3): 167-177.  https://doi.org/10.1007/s00572-004-0318-1 PubMedCrossRefGoogle Scholar
  148. Guillon, C., M. St-Arnaud, C. Hamel & S.H. Jabaji-Hare. 2002. Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Canadian Journal of Botany 80: 305-315.  https://doi.org/10.1139/b02-015 CrossRefGoogle Scholar
  149. Han, S.H., D.H. Kim, & J-C. Lee. 2011. Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populus alba x glandulosa. Journal of Ecology and Enviornment 34: 393–400.  https://doi.org/10.5141/JEFB. 2011. 041 CrossRefGoogle Scholar
  150. Hatch. 1936. The role of mycorrhiza in afforestation. Journal of Forest Research 34: 22-29.Google Scholar
  151. Haug, I., M. Wei, J. Homeier, R. Oberwinkler & I. Kottke. 2005. Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rainforest of southern Ecuador. New Phytologist 165: 923–936  https://doi.org/10.1111/j.1469-8137.2004.01284.x PubMedCrossRefGoogle Scholar
  152. Hayward, J., T.R. Horton & M.A. Nuńĩz. 2015. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208(2): 497-506  https://doi.org/10.1111/nph.13453 PubMedCrossRefGoogle Scholar
  153. Healy, R.A., M.E. Smith, G.M. Bonito, D.H. Pfister, Z.W. Ge, G.G. Guevara, G. Williams, K. Stafford, L. Kumar, T. Lee, C. Hobart, J. Trappe, R. Vilgalys & D.J. McLaughlin. 2013. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Molecular Ecology 22: 1717–1732.  https://doi.org/10.1111/mec.12135 PubMedCrossRefGoogle Scholar
  154. Henkel, T.W. 2003. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology 19: 417– 437.  https://doi.org/10.1017/S0266467403003468 CrossRefGoogle Scholar
  155. ———, M.C. Aime, M.M.L. Chin, S.L. Miller, R. Vilgalys, & M.E. Smith. 2011. Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity Conservation 21: 2195–2220.  https://doi.org/10.1007/s10531-011-0166-1
  156. Hentschel, E., D.L. Godbold, P. Marschner, H. Schlegel & G. Jentschke. 1993. The effect of Paxillus involutus Fr. on aluminium sensitivity of Norway spruce seedlings. Tree Physiology 12: 379–390.  https://doi.org/10.1093/treephys/12.4.379 PubMedCrossRefGoogle Scholar
  157. Hibbett, D.S., D. Grimaldi & M.J. Donoghue. 1997. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. American Journal of Botany 84: 981–991.  https://doi.org/10.2307/2446289 PubMedCrossRefGoogle Scholar
  158. ———, L.B. Gilbert & M.J. Donaghue. 2000. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407: 506–508.  https://doi.org/10.1038/35035065
  159. Hilszczańska, D., M. Małecka & Z. Sierota. 2008. Changes in nitrogen level and mycorrhizal structure of Scots pine seedlings inoculated with Thelephora terrestris. Annals of Forest Science 65: 409.  https://doi.org/10.1051/forest:2008020 CrossRefGoogle Scholar
  160. Hoeksema, J.D., J.V. Hernandez, D.L. Rogers, L.L. Mendoza & J.N. Thompson. 2012. Geographic divergence in a species-rich symbiosis: interactions between Monterey pines and ectomycorrhizal fungi. Ecology 93: 2274–2285.  https://doi.org/10.1890/11-1715.1 PubMedCrossRefGoogle Scholar
  161. Hofrichter, M., K. Vares, M. Kalsi, S. Galkin, K. Scheibner, W. Fritsche & A. Hatakka. 1999. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Applied and Environmental Microbiology 65: 1864–1870.PubMedPubMedCentralGoogle Scholar
  162. Högberg, M.N., E. Bååth, A. Nordgren, K. Arnebrant & P. Högberg. 2003. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs – a hypothesis based on field observations in boreal forests. New Phytologist 160: 225–238.  https://doi.org/10.1046/j.1469-8137.2003.00867.x CrossRefGoogle Scholar
  163. Horn K, T. Frank, M. Unterseher, M. Schnittler & L. Beenken. 2013. Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae). American Journal of Botany 100: 2158–2174.  https://doi.org/10.3732/ajb.1300011 PubMedCrossRefGoogle Scholar
  164. Horton, T.R. & T.D. Bruns. 1998. Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist 139: 331–339.  https://doi.org/10.1046/j.1469-8137.1998.00185.x CrossRefGoogle Scholar
  165. Horton, B.M., M. Glen, N.J. Davidson, D.A. Ratkowsky, D.C. Close, T.J. Wardlaw & C. Mohammed. 2017. An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae. Mycorrhiza 27: 67-74.  https://doi.org/10.1007/s00572-016-0725-0 PubMedCrossRefGoogle Scholar
  166. Hupperts, S.F., J. Karst, K. Pritsch & S.M. Landhäusser. 2017. Host phenology and potential saprotrophism of ectomycorrhizal fungi in the boreal forest. Functional Ecology 31: 116-126  https://doi.org/10.1111/1365-2435.12695 CrossRefGoogle Scholar
  167. Hynes, M.M., M.E. Smith, R.J. Zasoski & C.S. Bledsoe. 2009. A molecular survey of ectomycorrhizal hyphae in a California Quercus-Pinus woodland. Mycorrhiza.  https://doi.org/10.1007/s00572-009-028/-y
  168. Hynson, N.A., V.S.F.T. Merckx, B.A. Perry & K.K. Treseder. 2013. Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biology Invasions 15: 2373–2385.  https://doi.org/10.1007/s10530-013-0458-3 CrossRefGoogle Scholar
  169. Ishida T.A., K. Nara & T. Hogetsu. 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytologist 174: 430–440.  https://doi.org/10.1111/j.1469-8137.2007.02016.x PubMedCrossRefGoogle Scholar
  170. ———, ———, S. Ma, T. Takano & S. Liu. 2009. Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19(5): 329-335.  https://doi.org/10.1007/s00572-008-0219-9 PubMedCrossRefGoogle Scholar
  171. Izumi, H., I.C. Anderson, I.J. Alexander, K. Killham & E.R. Moore. 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiology Ecology 56: 34–43.  https://doi.org/10.1111/j.1574-6941.2005.00048.x PubMedCrossRefGoogle Scholar
  172. Izzo, A., J. Agbowo & T.D. Bruns. 2005. Detection of plot level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytologist 166: 619– 625.  https://doi.org/10.1111/j.1469-8137.2005.01354.x PubMedCrossRefGoogle Scholar
  173. Jairus, T., R. Mpumba, S. Chinoya & L. Tedersoo. 2011. Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. New Phytologist 192:179–187.  https://doi.org/10.1111/j.1469-8137.2011.03775.x PubMedCrossRefGoogle Scholar
  174. Javelle, A., B.R. Rodríguez-Pastrana, B. Botton, B. André, A.M. Marini, A. Brun & M. Chalot. 2001. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Letters 505(3): 393-398.  https://doi.org/10.1016/S0014-5793(01)02802-2 PubMedCrossRefGoogle Scholar
  175. ———, M. Morel, B.R. Rodríguez-Pastrana, B. Botton, B. André, A.M. Marini, A. Brun & M. Chalot. 2003. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Microbiology 47(2): 411-430.  https://doi.org/10.1046/j.1365-2958.2003.03303.x
  176. Jentschke, G., S. Winter, & D.L. Godbold. 1999. Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiology 19: 23–30.  https://doi.org/10.1093/treephys/19.1.23 PubMedCrossRefGoogle Scholar
  177. ———, B. Brandes, A.J. Kuhn, W.H. Schröder, J.S. Becker & D.L. Godbold. 2000. The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220: 243–246.  https://doi.org/10.1023/A: 1004727331860
  178. Johnson, D., F. Martin, J.W.G. Cairney & I.C. Anderson. 2012. The importance of individuals: intraspecific diversity on mycorrhizal plants and fungi in ecosystems. New Phytologist 194: 614–628.  https://doi.org/10.1111/j.1469-8137.2012.04087.x PubMedCrossRefGoogle Scholar
  179. Jones, D.L., P.G. Dennis, A.G. Owen & P.A.W. van Hees. 2003. Organic acid behavior in soils- misconceptions and knowledge gaps. Plant Soil 248(1): 31–41.  https://doi.org/10.1023/A: 1022304332313 CrossRefGoogle Scholar
  180. Jones, M.D., D.M. Durall & P.B. Tinker. 1998. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist 140: 125–134.  https://doi.org/10.1046/j.1469-8137.1998.00253.x CrossRefGoogle Scholar
  181. ———, F. Grenon, H. Peat, M. Fitzgerald, L. Holt, L.J. Philip & R.L. Bradley. 2009. Differences in 15N uptake amongst seedlings colonized by three pioneer ectomycorrhizal fungi in the field. Fungal Ecology 2: 110-120.  https://doi.org/10.1016/j.funeco.2009.02.002
  182. Jourand, P., M. Ducousso, R. Reid, C. Majorel, C. Richert, J. Riss & M. Lebrun. 2010. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiology 30: 1311–1319.  https://doi.org/10.1093/treephys/tpq070 PubMedCrossRefGoogle Scholar
  183. ———, L. Hannibal, C. Majorel, S. Mengant, M. Ducousso & M. Lebrun. 2014. Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globules grown in ultramafic top soil enhances plant growth and mineral nutrition while limits metal uptake. Journal of Plant Physiology 171: 164–172.  https://doi.org/10.1016/j.jplph.2013.10.011
  184. Jumpponen A, K.L. Jones, J. David Mattox, C. Yaege. 2010. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology 19:41–53.  https://doi.org/10.1111/j.1365-294 X.2009.04483.x PubMedCrossRefGoogle Scholar
  185. Jung, N.C. & Y. Tamai. 2013. Polyphosphate (phytate) formation in Quercus acutissima-Scleroderma verrucosum ectomycorrhizae supplied with phosphate. Journal of Plant Interaction 8(4): 291-303.  https://doi.org/10.1080/17429145.2013.816789 CrossRefGoogle Scholar
  186. Kataoka, R., T. Taniguchi & K. Futai. 2009. Fungal selectivity of two mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus thunbergii. World Journal of Microbiology and Biotechnology 25: 1815–1819.  https://doi.org/10.1007/s11274-009-0082-7 CrossRefGoogle Scholar
  187. Kayama, M. & T. Yamanaka. 2014. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees 28: 569–583.  https://doi.org/10.1007/s00468-013-0973-y CrossRefGoogle Scholar
  188. Kemppainen, M.J. & A.G. Pardo. 2013. LbNrt RNA silencing in the mycorrhizal symbiont Laccaria bicolor reveals a nitrate-independent regulatory role for a eukaryotic NRT2-type nitrate transporter. Environmental Microbiology Reports 5(3): 353-366.  https://doi.org/10.1111/1758-2229.12029 PubMedCrossRefGoogle Scholar
  189. ———, S. Duplessis, F. Martin & A.G. Pardo. 2009. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environmental Microbiology 11(7): 1878-1896.  https://doi.org/10.1111/j. 1462-2920.2009.01912.x
  190. Kennedy, P.G. & K.G. Peay. 2007. Different soil moisture conditions change the outcome of the ecto-mycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291: 155–165.  https://doi.org/10.1007/s11104-006-9183-3.CrossRefGoogle Scholar
  191. ———, P.B. Matheny, K.M. Ryberg, T.W. Henkel, J.K. Uehling & M.E. Smith. 2012. Scaling up: examining the macroecology of ectomycorrhizal fungi. Molecular Ecology 21: 4151–4154.Google Scholar
  192. Khosla, B. & M.S. Reddy. 2008. Response of ectomycorrhizal fungi on the growth and mineral nutrition of Eucalyptus seedlings in bauxite mined soil. American-Eurasian Journal of Agricultural and Environmental Science 3: 123-126.Google Scholar
  193. ———, H. Kaur & M.S. Reddy. 2009. Influence of ectomycorrhizal colonization on the growth and mineral nutrition of Populus deltoides under Aluminum toxicity. Journal of Plant Interactions 4(2): 93-99.  https://doi.org/10.1080/17429140802382953
  194. Kikuchi, J., N. Tsuno & K. Futai. 1991. The effect of mycorrhizae as a resistance factor of pine trees to the pinewood menatode. Journal of Japanese Forest Society 73: 216–218.Google Scholar
  195. Kluber, L.A., K.M. Tinnesand, B.A. Caldwell, S.M. Dunham, R.R. Yarwood, P.J. Bottomley & D.D. Myrold. 2010. Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biology and Biochemistry 42: 1607–1613.  https://doi.org/10.1016/j.soilbio.2010.06.001 CrossRefGoogle Scholar
  196. Koide, R.T., J.N. Sharda, J.R. Herr & G.M. Malcolm. 2008. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytologist 178: 230–233.  https://doi.org/10.1111/j.1469-8137.2008.02401.x PubMedCrossRefGoogle Scholar
  197. Kõljalg, U., R.H. Nilsson, K. Abarenkov, L. Tedersoo, A.F.S. Taylor, E. Larsson, et al. 2013. Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology 22: 5271-5277.  https://doi.org/10.1111/mec.12481 PubMedCrossRefGoogle Scholar
  198. Kottke, I., A. Beck, I. Haug, S. Setaro & J.P. Suárez. 2008. Mycorrhizal fungi and plant diversity in tropical mountain rain forest of southern Ecuador. In: S.R. Gradstein, J. Homeier & D. Gansert, (Eds.), The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot. Biodiversity and Ecology Series, Universitätsverlag Göttingen, vol. 2 pp. 7-67.Google Scholar
  199. ———, S. Setaro, I. Haug, P. Herrera, D. Cruz, A. Fries, J. Gawlik, J. Homeier, F.A. Werner, A. Gerique & J.P. Suárez. 2013. Mycorrhiza networks promote biodiversity and stabilize the tropical mountain rain forest ecosystem: Perspectives for understanding complex communities In: J.Bendix, E. Beck, I. Kottke, F. Makeschin & R. Mosandl (Eds.), Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Ecological Studies. Springer-Verlag Berlin Heidelberg, pp.187-203.Google Scholar
  200. Kranabetter, J.M., D.M. Durall & W.H. MacKenzie. 2009. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19: 99–111.  https://doi.org/10.1007/s00572-008-0208-z PubMedCrossRefGoogle Scholar
  201. Kropp, B.R. & C-G. Langlois. 1990. Ectomycorrhizae in reforestation. Canadian Journal of Forest Research 20(4): 438-451.  https://doi.org/10.1139/x90-061 CrossRefGoogle Scholar
  202. Krpata, D., W. Fitz, U. Peintner, I. Langer & P. Schweiger. 2009. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environmental Pollution 157: 280–286.  https://doi.org/10.1016/j.envpol.2008.06.038 PubMedCrossRefGoogle Scholar
  203. Krupa, P. & J. Kozdrój. 2004. Accumulation of Heavy Metals by Ectomycorrhizal Fungi Colonizing Birch Trees Growing in an Industrial Desert Soil. World Journal of Microbiology and Biotechnology 20(4): 427-430.  https://doi.org/10.1023/B:WIBI.0000033067.64061.f3 CrossRefGoogle Scholar
  204. Krznaric, E., N. Verbruggen, J.H.L. Wevers, R. Carleer, J. Vangronsveld & J.V. Colpaert. 2009. "Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.". Environmental Pollution 157: 1581–1588.  https://doi.org/10.1016/j.envpol.2008.12.030 PubMedCrossRefGoogle Scholar
  205. ———, J.H.L. Wevers, C. Cloquet, J. Vangronsveld, F. Vanhaecke & J.V. Colpaert. 2010. Zn pollution counteracts Cd toxicity in metaltolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environmental Microbiology 12: 2133–2141.  https://doi.org/10.1111/j.1462-2920.2009.02082.x
  206. Kumar, J. & N.S. Atri. 2016. Characterisation of ectomycorrhiza of Russula and Lactifluus (Russulaceae) associated with Shorea robusta from Indian Shiwaliks. Nova Hedwigia 103(3-4): 501-513.  https://doi.org/10.1127/nova_hedwigia/2016/0368 CrossRefGoogle Scholar
  207. Kumla, J., E.A. Hobbie, N. Suwannarach & S. Lumyong. 2016. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza 26: 333–343.  https://doi.org/10.1007/s00572-015-0672-1 PubMedCrossRefGoogle Scholar
  208. Kurth, F., K. Zeitler, L. Feldhahn, T.R. Neu, T. Weber, V. Krištůfek, T. Wubet, S. Herrmann, F. Buscot & M. Tarkka. 2013. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology 13: 205.  https://doi.org/10.1186/1471-2180-13-205 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Kuster, H., A. Becker, C. Firnhaber, N. Hohnjec, K. Manthey, A.M. Perlick, T. Bekel, M. Dondrup, K. Henckel, A. Goesmann, F. Meyer et al. 2007. Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 38: 19-32.  https://doi.org/10.1016/j.phytochem.2006.09.026 CrossRefGoogle Scholar
  210. Kyaschenko, J., K. E. Clemmensen, A. Hagenbo, E. Karltunand & B. D. Lindahl. 2017. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. The ISME Journal 11: 863-874.  https://doi.org/10.1038/ismej.2016.184 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Lakhanpal, T.N. & S. Kumar. 1984. Studies on mycorrhiza and mycorrhizosphere of Picea smithiana. Journal of Tree Science 3: 5–9.Google Scholar
  212. Lambers, H., F.S. Chapin & T.L. Pons. 1998. Plant physiological ecology. Springer, New York.CrossRefGoogle Scholar
  213. ———, M.C. Brundrett, J.A. Raven & S.D. Hopper. 2010. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334: 11–31.  https://doi.org/10.1007/s11104-010-0444-9
  214. Lamhamedi, M.S., P.Y. Mernier & J.A. Fortin. 1992. Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiology 10: 153-167PubMedCrossRefGoogle Scholar
  215. Lancelloti, E. & A. Franceschini. 2013. Studies on the ectomycorrhizal community in a declining Quercus suber L. Stand. Mycorrhiza 23: 533-542.  https://doi.org/10.1007/s00572-013-0493-2 CrossRefGoogle Scholar
  216. Langenfeld-Heyser, R., J. Gao, T. Ducic, Ph. Tachd, C.F. Lu, E. Fritz, A. Gafur & A. Polle. 2007. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus × canescens. Mycorrhiza 17: 121-131.  https://doi.org/10.1007/s00572-006-0084-3 PubMedCrossRefGoogle Scholar
  217. Leake, J.R. 2004. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Current Opinion in Plant Biology 7: 422 – 428.PubMedCrossRefGoogle Scholar
  218. Lehto, T. & J.J. Zwiazek. 2011. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2): 71–90.  https://doi.org/10.1007/s00572-010-0348-9 PubMedCrossRefGoogle Scholar
  219. Leonardi, M., O. Comandini & A.C. Rinaldi. 2016. Peering into the Mediterranean black box: Lactifluus rugatus ectomycorrhizas on Cistus. IMA FUNGUS 7(2): 275–284.  https://doi.org/10.5598/ imafungus. 2016.07.02.07 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Leyval, C. & J. Berthelin. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117: 103-120.  https://doi.org/10.1007/BF02206262 CrossRefGoogle Scholar
  221. Li, J., S. Bao, Y. Zhang, X. Ma, M. Mishra-Knyrim, J. Sun, G. Sa, X. Shen, A. Polle & S. Chen. 2012. Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress. Plant Physiology 159: 1771–1786,  https://doi.org/10.1104/pp.112.195370 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Lilleskov, E.A., T.J. Fahey, T.R. Horton & G.M. Lovett. 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104-115.  https://doi.org/10.2307/2680124 CrossRefGoogle Scholar
  223. Lindahl, B.D. & A. Tunlid. 2015. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprophytes. New Phytologist 205: 1443–1447.  https://doi.org/10.1111/nph.13201 PubMedCrossRefGoogle Scholar
  224. Looney, B.P., M. Ryberg, F. Hampe, M. Sánchez-García & P.B. Matheny. 2016. Into and out of the tropics: global diversification patterns in a hyper-diverse clade of ectomycorrhizal fungi. Molecular Ecology 25: 630–647.  https://doi.org/10.1111/mec.13506 PubMedCrossRefGoogle Scholar
  225. Lotti, M. & A. Zambonelli. 2006. A quick and precise technique for identifying ectomycorrhizas by PCR. Mycological Research 110: 60–65.  https://doi.org/10.1016/j.mycres.2005.09.010 CrossRefGoogle Scholar
  226. Luo, Z.B., D. Janz, X. Jiang, C. Göbel, H. Wildhagen, Y. Tan, H. Rennenberg, I. Feussner & A. Polle. 2009. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology 151: 1902–1917.  https://doi.org/10.1104/pp.109.143735 PubMedPubMedCentralCrossRefGoogle Scholar
  227. ———, K. Li, Y. Gai, C. Gobel, H. Wildhagen, X.N. Jiang, I. Feussner, H. Rennenberg & A. Polle. 2011. The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental and Experimental Botany 72: 304–311.  https://doi.org/10.1016/j. envexpbot.2011.04.008
  228. ———, Ch. Wua, Ch. Zhang, H. Lic, U. Lipkad, Polleda & A. College. 2014. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany 108: 47–62.  https://doi.org/10.1016/j.envexpbot.2013.10.018
  229. Ma, Y., J. He, C. Ma, J. Luo, H. Li, T. Liu, A. Polle, C. Peng & Z.B. Luo. 2013. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus canescens. Plant Cell Environment 37: 627–642.  https://doi.org/10.1111/pce.12183 CrossRefGoogle Scholar
  230. Maba, D.L., A.K. Guelly, N.S. Yorou, A. DE Kesel, A. Verbeken & R. Agerer. 2014. The genus Lactarius s. str. (Basidiomycota, Russulales) in Togo (West Africa): phylogeny and new species described. IMA Fungus 5: 39-49.  https://doi.org/10.5598/imafungus.2014.05.01.05 PubMedPubMedCentralCrossRefGoogle Scholar
  231. ———, A.K. Guelly, N.S. Yorou, A. Verbeken & R. Agerer. 2015. Phylogenetic and microscopic studies in the genus Lactifluus (Basidiomycota, Russulales) in West Africa, including the description of four new species. IMA Fungus 6 (1): 39-49.  https://doi.org/10.5598/ima fungus.2015 .06.01.02
  232. Malysheva, E.F., V.F. Malysheva, A.E. Kovalenko, E.A. Pimenova, M.N. Gromyko, S.N. Bondarchuk & E.Y. Voronina. 2016. Below-Ground Ectomycorrhizal Community Structure in the Postfire Successional Pinus koraiensis Forests in the Central Sikhote-Alin (the Russian Far East). Botanica Pacifica- Journal of plant science and conservation 5(1): 19–31.  10.17581/bp.2016.05102 CrossRefGoogle Scholar
  233. Marcel, G., A. van der Heijden, F.M. Martin, M.A. Selosse & I.R. Sanders. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406–1423.  https://doi.org/10.1111/nph.13288 CrossRefGoogle Scholar
  234. Martin, F. & M.A. Selosse. 2008. The Laccaria genome: a symbiont blueprint decoded. New Phytologist 180: 296–310.  https://doi.org/10.1111/j.1469-8137.2008.02613.x PubMedCrossRefGoogle Scholar
  235. ———, A. Aerts, D. Ahren, A. Brun, E.G.J. Danchin, F. Duchaussoy, J. Gibon, A. Kohler E. Lindquist, V. Pereda et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88–92.  https://doi.org/10.1038/nature06556
  236. ———, A. Kohler, C. Murat, R. Balestrini, P.M. Coutinho, O. Jaillon, B. Montanini, E. Morin, B. Noel, R. Percudani et al. 2010. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464: 1033–1038.  https://doi.org/10.1038/nature08867
  237. Marx, D.H. 1972. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology 10: 429-454.  https://doi.org/10.1146/annurev.py.10.090172.002241 PubMedCrossRefGoogle Scholar
  238. ———, K. Jarl, J.L. Ruehle & W. Bell. 1984. Development of Pisolithus tinctorius ectomycorrhizae on pine seedlings using basidiospore encapsulated seeds. Forest Science 30: 897–907.Google Scholar
  239. ———, A. Hedin & S.F.P. Toe. 1985. Field performance of Pinus caribaea var. Hondurensis seedlings with specific ectomycorrhizae and fertilizer after three years on a savana site Liberia. Forest Ecology and Management 13(12): 1-25.  https://doi.org/10.1016/0378-1127(85)90002-7
  240. ———, J.L. Ruehle & C.E. Cordell. 1991. Methods for Studying Nursery and Field Response of Trees to Specific Ectomycorrhiza. In: J.R. Norris, D.J. Read & A.K. Varma (Eds.), Methods in Microbiology, Academic Press, London, UK. pp. 383–411.Google Scholar
  241. Matheny, P.B., J.M. Curtis, V. Hofstetter, M.C. Aime, J.M. Moncalvo, Z.W. Ge, Z.L. Yang, J.C. Slot, J.F. Ammirati, T.J. Baroni et al. 2006. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98: 982–995.  https://doi.org/10.3852/mycologia.98.6.982 PubMedCrossRefGoogle Scholar
  242. ———, M.C. Aime, N.L. Bougher, B. Buyck, D.E. Desjardin et al. 2009. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. Journal of Biogeography 36: 577–592.  https://doi.org/10.1111/j.1365-2699.2008.02055.x
  243. Matsuda, Y., N. Hayakawa & S. Ito. 2008. Local and microscale distributions of Cenococcum geophilum in soils of coastal pine forests. Fungal Ecology 2: 31–35.  https://doi.org/10.1016/ j.funeco.2008.10.002 CrossRefGoogle Scholar
  244. ———, Y. Noguchi & S. Ito. 2009. Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. Journal of Forest Research 14: 335–341.  https://doi.org/10.1007/s10310-009-0140-x.
  245. Maurel, C. & C. Plassard. 2011. Aquaporins: for more than water at the plant–fungus interface? New Phytologist 190(4): 815–817.  https://doi.org/10.1111/j.1469-8137.2011.03731.x PubMedCrossRefGoogle Scholar
  246. Maury-Lechon, G. & L. Curtet. 1998. Biogeography and Evolutionary Systematics of Dipterocarpaceae. In: A Review of Dipterocarps: Taxonomy, ecology and silviculture Center for International Forestry Research Bogor, Indonesia ISBN 979-8764-20-X.Google Scholar
  247. Mediavilla, O., J. Olaizola, L. Santos-del-Blanco, J.A. Oria-de-Rueda & P. Martín-Pinto. 2016. Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula. Mycorrhiza 26: 161–168.  https://doi.org/10.1007/s00572-015-0657-0 PubMedCrossRefGoogle Scholar
  248. Menkis, A., D. Burokiene, T. Gaitnieks, A. Uotila, H. Johannesson, A. Rosling, R. Finlay, J. Stenlid & R. Vasaitis. 2012. Occurrence and impact of the root-rot biocontrol agent Phlebiopsis gigantea on soil fungal communities in Picea abies forests of northern Europe. FEMS Microbiology Ecology 81: 438-445.  https://doi.org/10.1111/j.1574-6941.2012.01366.x PubMedCrossRefGoogle Scholar
  249. Miller, R.M. & J.D. Jastrow. 1992. The application of VA mycorrhizae to ecosystem restoration and reclamation. In: M. Allen (Ed.), Mycorrhizal functioning. Chapman & Hall, New York.Google Scholar
  250. Moeller, H.V., I.A. Dickie, D.A. Peltzer & T. Fukami. 2015. Mycorrhizal coinvasion and novel interactions depend on neighborhood context. Ecology 96: 2336–2347.  https://doi.org/10.1890/14-2361.1 PubMedCrossRefGoogle Scholar
  251. Mohan, V., K. Natarajan & K. Ingleby. 1993. Anatomical studies on ectomycorrhizas. I. The ectomycorrhizas produced by Thelephora terrestris on Pinus patula. Mycorrhiza 3: 39–42.  https://doi.org/10.1007/BF00213466 CrossRefGoogle Scholar
  252. ———, R. Nivea, S. Menon. 2015. Evaluation of Ectomycorrhizal Fungi as Potential Bio-control Agents against Selected Plant Pathogenic Fungi. Journal of Academia and Industrial Research (JAIR) 3 (9): 408-412.Google Scholar
  253. Molina, R. & J.M. Trappe. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific North – West Conifer and fungi. Forest Science 28: 423-458.Google Scholar
  254. ——— & ———. 1994. Biology of the ectomycorrhizal genus: Rhizopogon I. Host associations, host-specificity and pure culture syntheses. New Phytologist 126: 653–675.  https://doi.org/10.1111/j.1469-8137.1994.tb02961.x CrossRefGoogle Scholar
  255. Molinier, V., C. Murat, M. Peter, A. Gollotte, H. De la Varga, B. Meier, S. Egli, B. Belfiori, F. Paolocci & D. Wipf. 2016. SSR-based identification of genetic groups within European populations of Tuber aestivum Vittad. Mycorrhiza 26: 99–110.  https://doi.org/10.1007/s00572-015-0649-0 PubMedCrossRefGoogle Scholar
  256. Morel, M., C. Jacob, M. Fitz, D. Wipf, M. Chalot & A. Brun. 2008. Characterization and regulation of PiDur3, a permease involved in the acquisition of urea by the ectomycorrhizal fungus Paxillus involutus. Fungal Genetics and Biology 45: 912–921.  https://doi.org/10.1016/j.fgb.2008.01.002 PubMedCrossRefGoogle Scholar
  257. Morris, M.H., M.E. Smith, D.M. Rizzo, M. Rejmanek & C.S. Bledsoe. 2008. Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytologist 178: 167–176.  https://doi.org/10.1111/j.14698137.2007.02348.x PubMedCrossRefGoogle Scholar
  258. Moyer-Henry, K., I. Silva, J. Macfall, E. Johannes, N. Allen, B. Goldfarb & T. Rufty. 2005. Accumulation and localization of aluminium in root tips of loblolly pine seedlings and the associated ectomycorrhiza Pisolithus tinctorius. Plant Cell Environment 28: 111–120.  https://doi.org/10.1111/j.1365-3040.2004.01240.x CrossRefGoogle Scholar
  259. Moyersoen, B. & M. Weiß. 2014. New Neotropical Sebacinales Species from a Pakaraimaea dipterocarpacea Forest in the Guayana Region, Southern Venezuela: Structural Diversity and Phylogeography. PLOS ONE 9(8): e107078.  https://doi.org/10.1371/journal.pone.0107078 CrossRefGoogle Scholar
  260. Mrak, T., K. Kühdorf, T. Grebenc, I. Štraus, B. Münzenberger & H. Kraigher. 2017. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 27: 283-293.  https://doi.org/10.1007/s00572-016-0748-6 PubMedCrossRefGoogle Scholar
  261. Muhlmann, O., M. Bacher & U. Peintner. 2008. Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18: 87–95.  https://doi.org/10.1007/s00572-007-0156-z PubMedCrossRefGoogle Scholar
  262. Müller, T., M. Avolio, M. Olivi, M. Benjdia, E. Rikirsch, A. Kasaras et al. 2007. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68: 41–51.  https://doi.org/10.1016/j.phytochem.2006.09.021 PubMedCrossRefGoogle Scholar
  263. Nakashima, H., N. Eguchi, T. Uesugi, N. Yamashita & Y. Matsuda. 2016. Effect of ectomycorrhizal composition on survival and growth of Pinus thunbergii seedlings varying in resistance to the pine wilt nematode. Trees 30: 475–481.  https://doi.org/10.1007/s00468-015-1217-0 CrossRefGoogle Scholar
  264. Nara, K. 2006. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytologist 169: 169–178.  https://doi.org/10.1111/j.1469-8137.2005.01545.x PubMedCrossRefGoogle Scholar
  265. Natarajan, K., G. Senthilrasu, V. Kumaresan & T. Riviera. 2005. Diversity in Ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Current Science 88 (12): 1893-1895.Google Scholar
  266. Navarro-Ródenas, A., L.M. Berná, C. Lozano-Carrillo, A. Andrino & A. Morte. 2016. Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza 26(7): 769-779.  https://doi.org/10.1007/s00572-016-0711-6 PubMedCrossRefGoogle Scholar
  267. Nehls, U., Dietz, S. 2014. Fungal aquaporins: cellular functions and ecophysiological perspectives. Fungal Aquaporins: Cellular Functions and Ecophysiological Perspectives. Applied Microbiology and Biotechnology 98(21): 8835-8851.  https://doi.org/10.1007/s00253-014-6049-0 PubMedCrossRefGoogle Scholar
  268. ———, F. Göhringer, S. Wittulsky & S. Dietz. 2010. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biology 12(2): 292-301.  https://doi.org/10.1111/j.1 438-8677.2009.00312.x
  269. Nouhra, E., C. Urcelay, S. Longo & L. Tedersoo. 2013. Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza.  https://doi.org/10.1007/s00572-013-0490-2
  270. Nuñez, M.A., T.R. Horton & D. Simberloff. 2009. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90(9): 2352–2359.  https://doi.org/10.1890/08-2139.1 PubMedCrossRefGoogle Scholar
  271. O’Hanlon, R. 2012. Below-ground ectomycorrhizal communities: the effect of small scale spatial and short term temporal variation. Symbiosis 57: 57–71.  https://doi.org/10.1007/s13199-012-0179-x CrossRefGoogle Scholar
  272. Obase, K., J.Y. Cha, J.K. Lee, S.Y. Lee, J.H. Lee & K.W. Chun. 2009. Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20(1): 39-49.  https://doi.org/10.1007/s00572-009-0262-1 PubMedCrossRefGoogle Scholar
  273. Ott, T., E. Fritz, A. Polle & A. Schützendübel. 2002. Characterization of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiology Ecology 42: 359–366.  https://doi.org/10.1111/j.1574-6941.2002.tb01025.x PubMedCrossRefGoogle Scholar
  274. Pande, V., U.T. Palni & S.P. Singh. 2004. Species diversity of ectomycorrhizal fungi associated with temperate forest of Western Himalaya: a preliminary assessment. Current Science 86: 1619-1623.Google Scholar
  275. Parrent, J.L., W.F. Morris & R. Vilgalys. 2006. CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87: 2278–2287.  https://doi.org/10.1890/0012-9658(2006) 87[2278:CA NAAE] 2.0.CO;2 PubMedCrossRefGoogle Scholar
  276. Paul, L.R., B.K. Chapman & C.P. Chanway. 2007. Nitrogen fixation associated with Suillus tomentosus tuberculate ectomycorrhizae on Pinus contorta var. latifolia. Annals of Botany 99: 1101–1109.  https://doi.org/10.1093/aob/mcm061 PubMedPubMedCentralCrossRefGoogle Scholar
  277. Peay, K.G. & P.B. Matheny. 2017. Biogeography of ectomycorrhizal fungi. In: F. Martin (eds.), The Molecular Mycorrhizal Symbiosis, John Wiley & Sons, pp. 341-361.Google Scholar
  278. ———, P.G. Kennedy, S.J. Davies, S. Tan & T.D. Bruns. 2010. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytologist 185: 529–542.  https://doi.org/10.1111/j.1469-8137.2009.03075.x
  279. ———, ——— & T.D. Bruns. 2011. Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecology 4: 233–240.  https://doi.org/10.1016/j.funeco.2010.09.010 CrossRefGoogle Scholar
  280. ———, M.G. Schubert, N.H. Nguyen & T.D. Bruns. 2012. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Molecular Ecology 21: 4122–4136.  https://doi.org/10.1111/j.1365-294X.2012.05666.x
  281. ———, S.E. Russo, K.L. McGuire, Z. Lim, J.P. Chan, S. Tan & S.J. Davies. 2015. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecology Letter 18(8): 807–816  https://doi.org/10.1111/ele.12459
  282. Pedersen, B.P., H. Kumar, A.B. Waight, A.J. Risenmay, Z. Roe-Zurz, B.H. Chau, A. Schlessinger, M. Bonomi, W. Harries & A. Sali. 2013. Crystal structure of a eukaryotic phosphate transporter. Nature 496: 533– 536.  https://doi.org/10.1038/nature12042 PubMedPubMedCentralCrossRefGoogle Scholar
  283. Perez-Moreno, J. & D.J. Read. 2000. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145: 301–309,  https://doi.org/10.1046/j.1469-8137.2000.00569.x CrossRefGoogle Scholar
  284. Pfabel, C., K.U. Eckhardt, C. Baum, C. Struck, P. Frey & M. Weih. 2012. Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa deltoides). Tree Physiology 32: 1357–1364.  https://doi.org/10.1093/treephys/tps093 PubMedCrossRefGoogle Scholar
  285. Phillips, L.A., V. Ward & M.D. Jones. 2014. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME Journal 8: 699–713.  https://doi.org/10.1038/ismej.2013.195 PubMedCrossRefGoogle Scholar
  286. Phosri, C., S. Põlme, A.F.S. Taylor, U. Kõljalg, N. Suwannasai & L. Tedersoo. 2012. Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. Biodiversity and Conservation 21: 2287–2298.  https://doi.org/10.1007/s10531-012-0250-1 CrossRefGoogle Scholar
  287. Plassard, C. & B. Dell. 2010. Phosphorus nutrition of mycorrhizal trees. Tree Physiology 30: 1129–1139.  https://doi.org/10.1093/treephys/tpq063 PubMedCrossRefGoogle Scholar
  288. Plett, J.M. & F. Martin. 2011. Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends in Genetics 27: 14–22.  https://doi.org/10.1016/j.tig.2010.10.005 PubMedCrossRefGoogle Scholar
  289. ———, Y. Daguerre, S. Wittulsky, A. Vayssières, A. Deveau, S.J. Melton, A. Kohler, J.L. Morrell-Falvey, A. Brun, C. Veneault-Fourrey & F. Martin. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of National Academy of Sciences USA. 111(22): 8299-8304.  https://doi.org/10.1073/pnas.1322671111
  290. Pressel, S., M.I. Bidartondo, R. Ligrone, J.G. Duckett. 2010. Fungal symbioses in bryophytes: New insights in the twenty first century. Phytotaxa 9: 238-253.  10.11646/phytotaxa.9.1.13 CrossRefGoogle Scholar
  291. Pringle, A., R.I. Adams, H.B. Cross & T.D. Bruns. 2009. The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Molecular Ecology 18(5): 817–833.  https://doi.org/10.1111/j.1365-294X.2008.04030.x PubMedCrossRefGoogle Scholar
  292. Pritsch, K., & J. Garbaye. 2011. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science 68: 25–32.  https://doi.org/10.1007/s13595-010-0004-8 CrossRefGoogle Scholar
  293. ———, H. Boyle, J.C. Munch & F. Buscot. 1997. Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer. New Phytologist 137: 357–369.  https://doi.org/10.1046/j.1469-8137.1997.00806.x
  294. Pyasi, A., K.K. Soni & R.K. Verma. 2011. Dominant occurrence of ectomycorrhizal colonizer Astraeus hygrometricus of sal (Shorea robusta) in forest of Jharsuguda Orissa. Journal of Mycology and Plant Pathology 41(2): 222-225.Google Scholar
  295. Quoreshi, A.M. & D.P. Khasa. 2008. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy 32: 381–391.  https://doi.org/10.1016/j.biombioe.2007.10.010 CrossRefGoogle Scholar
  296. ———, Y. Piché & D.P. Khasa. 2008. Field performance of conifer and hardwood species five years after nursery inoculation in the Canadian Prairie Provinces. New Forests 35: 235–253.  https://doi.org/10.1007/s11056-007-9074-3
  297. Quoreshi, M. & V.R. Timmer. 2000. Growth, nutrient dynamics, and ectomycorrhizal development of container-grown Picea mariana seedlings in response to exponential nutrient loading. Canadian Journal of Forest Research 30: 191–201.  https://doi.org/10.1139/x99-208 CrossRefGoogle Scholar
  298. Richard, F., M. Roy, O. Shahin, C. Sthultz, M. Duchemin, R. Joffre & M.A. Selosse. 2011. Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Annals of Forest Science 68: 57–68.  https://doi.org/10.1007/s13595-010-0007-5 CrossRefGoogle Scholar
  299. Rinaldi, A.C., O. Comadini & T.W. Kuyper. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33:1–45.Google Scholar
  300. Rincón, A., J. Parladé & J. Pera. 2005. Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerised Pinus pinea L. seedlings produced in a commercial nursery. Annals of Forest Science 62: 1–6.  https://doi.org/10.1051/forest:2005087 CrossRefGoogle Scholar
  301. ———, B. Ruiz-Diez, M. Fernandez-Pascual, A. Probanza, J.M. Pozuelo & M.R. de Felipe. 2006. Afforestation of degraded soils with Pinus halepensis Mill.: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Applied Soil Ecology 34:42–51.  https://doi.org/10.1016/ j.apsoil.2005. 12.004
  302. ———, M.R. de Felipe & M. Fernández-Pascual. 2007. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18(1): 23–32.  https://doi.org/10.1007/s00572-007-0149-y
  303. Rineau, F., F. Shah, M. Smits, P. Persson, T. Johansson, R. Carleer, C. Troein & A. Tunlid. 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME Journal 7: 2010– 2022.  https://doi.org/10.1038/ismej.2013.91 PubMedCrossRefGoogle Scholar
  304. Riviere, T., A.G. Diedhiou, M. Diabate, G. Senthilarasu, K. Natarajan, A. Verbeken, B. Buyck, B. Dreyfus, G. Bena & A.M. Bâ. 2007. Genetic diversity of ectomycorrhizal basidiomycetes from African and Indian tropical forests. Mycorrhiza 17: 415–428.  https://doi.org/10.1007/s00572-007-0117-6 PubMedCrossRefGoogle Scholar
  305. Roman, M.D., V. Claveria & A.M.D. Miguel. 2005. A revision of the descriptions of ectomycorrhizas published since 1961. Mycological Research 109 (10): 1063-1104.  https://doi.org/10.1017/S0953756205003564 PubMedCrossRefGoogle Scholar
  306. Rouhier, H. & D.J. Read. 1999. Plant and fungal responses to elevated atmospheric CO2 in mycorrhizal seedlings of Betula pendula. Environmental Experimental Botany 42: 231–241.  https://doi.org/10.1016/ S0098-8472(99)00039-8 CrossRefGoogle Scholar
  307. Rousseau, J.V.D., D.M. Sylvia & A.J. Fox. 1994. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytologist 128: 639–644.  https://doi.org/10.1111/j.1469-8137.1994.tb04028.x CrossRefGoogle Scholar
  308. Roy, M., J. Rochet, S. Manzi, P. Jargeat, H. Gryta, P.A. Moreau et al. 2013. What determines Alnus associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytologist 198: 1228–1238.  https://doi.org/10.1111/ nph.12212 PubMedCrossRefGoogle Scholar
  309. ———, A.Vasco-Palacios, J. Geml, B. Buyck, L. Delgat et al. 2017. The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. New Phytologist 214: 920–923.Google Scholar
  310. Roy-Bolduc, A., E. Laliberté & M. Hijri. 2016. High richness of ectomycorrhizal fungi and low host specificity in costal sand dune ecosystem revealed by network analysis. Ecology Evolution 6(1): 349-362.  https://doi.org/10.1002/ece3.1881 PubMedCrossRefGoogle Scholar
  311. Rudawska, M., M. Pietras, I. Smutek, P. Strzeliński & T. Leski. 2016. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26: 57–65.  https://doi.org/10.1007/s00572-015-0646-3 PubMedCrossRefGoogle Scholar
  312. Schier, G. & C. McQuattie. 1995. Effect of aluminium on the growth, anatomy, and nutrient content of ectomycorrhizal and nonmycorrhizal eastern white pine seedlings. Canadian Journal of Forest Research 25: 1252– 1262.  https://doi.org/10.1139/x95-138 CrossRefGoogle Scholar
  313. Sebastiana, M., J. Martins, A. Figueiredo, F. Monteiro, J. Sardans, J. Peñuelas, A. Silva, P. Roepstorff, M.S. Pais & A.V. Coelho. 2017. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza 27: 109-128.  https://doi.org/10.1007/s00572-016-0734-z PubMedCrossRefGoogle Scholar
  314. Shah, F., C. Nicolàs, J. Bentzer, M. Ellström, M. Smits, F. Rineau, B. Canbäck, D. Floudas, R. Carleer, G. Lackner, J. Braesel, D. Hoffmeister, B. Henrissat, D. Ahrén, T. Johansson, D.S. Hibbett, F. Martin, P. Persson & A. Tunlid. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209: 1705–1719.  https://doi.org/10.1111/nph.13722
  315. Shakya, M., N. Gottel, H. Castro, Z.K. Yang, L. Gunter, J. Labbe, W. Muchero, G. Bonito, R. Vilgalys, G. Tuskan et al. 2013. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE 8(10): e76382.  https://doi.org/10.1371/journal.pone.0076382 PubMedPubMedCentralCrossRefGoogle Scholar
  316. Sharma R, R.C. Rajak, A.K. Pandey. 2008a. Some ectomycorrhizal mushrooms of Central India-I. Russula. Journal of Mycopathological Research 46(2): 201-212.Google Scholar
  317. ———, ———, ———. 2008b. Some ectomycorrhizal mushrooms of Central India-II. Lactarius. Journal of Mycopathological Research 47(1): 43-47.Google Scholar
  318. ———, ———, ———. 2009: Ectomycorrhizal mushrooms in Indian tropical forests. Biodiversity 10 (1): 25-30.  https://doi.org/10.1080/14888386.2009.9712634 CrossRefGoogle Scholar
  319. Sharma, S., M.K. Saini & N.S. Atri. 2016. Some new records of Russulaceous mushrooms from North West Himalayas. Kavaka 46: 5-13.Google Scholar
  320. Shrestha, V.G., K. Shrestha & H. Wallander. 2005. Antagonistic study of ectomycorrhizal fungi isolated from Baluwa forest (Central Nepal) against pathogenic fungi and bacteria. Science World 3: 44-56.Google Scholar
  321. Siemens, J.A., M. Calvo-Polanco & J.J Zwiazek. 2011. Hebeloma crustuliniforme facilitates ammonium and nitrate assimilation in trembling aspen (Populus tremuloides) seedlings. Tree Physiology 31: 1238–1250.  https://doi.org/10.1093/treephys/tpr104 PubMedCrossRefGoogle Scholar
  322. Simard, S.W., & D.M. Durall. 2004. Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany 82: 1140–1165.  https://doi.org/10.1139/b04-116 CrossRefGoogle Scholar
  323. ———, A.P. David, M.D. Jones, D.D. Myrold, D.M. Durall & R. Molina. 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388: 579–582.Google Scholar
  324. Sinsabaugh, R.L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42: 391–404.  https://doi.org/10.1016/j.soilbio.2009.10.014 CrossRefGoogle Scholar
  325. Smith, D. & K.G. Peay. 2014. Sequence depth, not PCR replication, improves ecological inference from Next Generation DNA Sequencing. PLoS One 92, e90234.  https://doi.org/10.1371/journal.pone.0090234 CrossRefGoogle Scholar
  326. Smith, S.E. & D.J. Read. 2008. Mycorrhizal symbiosis 3rd edition. Academic, New York.Google Scholar
  327. ——— & F.A. Smith. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104: 1– 13.  https://doi.org/10.3852/11-229
  328. Smith, M.E, G.W. Douhan, D.M. Rizzo. 2007. Ectomycorrhizal community structure in xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytologist 174:847– 863.  https://doi.org/10.1111/j.1469-8137.2007.02040.x PubMedCrossRefGoogle Scholar
  329. ———, T.W. Henkel, M.C. Aime, A.K. Fremier & R. Vilgalys. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist 192: 699–712.  https://doi.org/10.1111/j.1469-8137.2011.03844.x
  330. ———, ———, J.K. Uehling, A.K. Fremier, H.D. Clarke & R. Vilgalys. 2013. The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimea dipterocarpacea. PLoS ONE 8: e55160.  https://doi.org/10.1371/ journal. Po ne.0055160 PubMedPubMedCentralCrossRefGoogle Scholar
  331. Stonor, R.N., S.E. Smith, M. Manjarrez, E. Facelli & F.A. Smith. 2014. Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza 24(6): 465-472.  https://doi.org/10.1007/s00572-014-0556-9 PubMedCrossRefGoogle Scholar
  332. Suvi, T., L. Tedersoo, K. Abarenkov, J. Gerlach, K. Beaver & U. Kõljalg. 2010. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102: 522–533.  https://doi.org/10.3852/09-147 PubMedCrossRefGoogle Scholar
  333. Szuba, A. 2015. Ectomycorrhiza of Populus. Forest Ecology and Management 347: 156-169.  https://doi.org/10.1016/ j.foreco.2015.03.012 CrossRefGoogle Scholar
  334. Talbot, J.M., T.D. Bruns, D.P. Smith, S. Branco, S.I. Glassman, S. Erlandson, R. Vilgalys & K.G. Peay. 2013. Independent roles of ectomycorrhizal and saprophytic communities in soil organic matter decomposition. Soil Biology and Biochemistry 57: 282–291.  https://doi.org/10.1016/j.soilbio.20 12.10.004 CrossRefGoogle Scholar
  335. Taniguchi, T., N. Kanzaki, S. Tamai, N. Yamanaka & K. Futai. 2007. Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient. New Phytologist 173: 322–334.  https://doi.org/10.1111/ j.1469-8137.2006.01910.x PubMedCrossRefGoogle Scholar
  336. ———, R. Kataoka, & K. Futai. 2008. Plant growth and nutrition in pine seedlings (Pinus thunbergia) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biology and Biochemistry 40: 1235–1243.  https://doi.org/10.1016/j.soilbio.2007.12.017
  337. Tapwal, A., R. Kumar & S. Pandey. 2013: Diversity and frequency of macrofungi associated with wet ever green tropical forest in Assam, India. Biodiversitas 14(2): 73-78.  10.13057/biodiv/ d140204 CrossRefGoogle Scholar
  338. ———, ——— D. Borah. 2015. Effect of mycorrhizal inoculations on the growth of Shorea robusta seedlings. Nusantara Bioscience 7: 1-5.  10.13057/nusbiosci/n070101 CrossRefGoogle Scholar
  339. Tatry, M.V., E.E. Kassis, R. Lambilliotte, C. Corratgé, I. Van Aarle, L.K. Amenc, R. Alary, S. Zimmermann, H. Sentenac & C. Plassard. 2009. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant Journal 57: 1092–1102.  https://doi.org/10.1111/j.1365-313X .2008.03749.x PubMedCrossRefGoogle Scholar
  340. Taylor, A.F.S. & I.J. Alexander. 2005. The ectomycorrhizal symbiosis: life in the real world. Mycologist 19: 102–112.  https://doi.org/10.1017/S0269-915X(05)00303-4 CrossRefGoogle Scholar
  341. ———, G. Gebauer & D.J. Read. 2004. Uptake of nitrogen and carbon from double-labelled 15N and 13C glycine by mycorrhizal pine seedlings. New Phytologist 164: 383–388.  https://doi.org/10.1111/j.1469-8137.2004.01164.x
  342. Tedersoo, L. & M.E. Smith. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83–99.  https://doi.org/10.1016/j.fbr.2013.09.001 CrossRefGoogle Scholar
  343. ———, T. Suvi, E. Larsson & U. Kõljalg. 2006. Diversity and community structure of ectomy-corrhizal fungi in a wooded meadow. Mycological Research 110: 734–748.  https://doi.org/10.1016/j.mycres.20 06.04.007
  344. ———, ———, K. Beaver & U. Kõljalg. 2007. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytologist 175: 321–333.  https://doi.org/10.1111/j.1469-8137.2007.02104.x
  345. ———, T. Jairus, B.M. Horton, K. Abarenkov, T. Suvi, I. Saar & U. Kõljalg. 2008. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon- specific primers. New Phytologist 180: 479–490.  https://doi.org/10.1111/j.1469-8137.2008.02561.x
  346. ———, T.W. May & M.E. Smith. 2010a. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217–263.  https://doi.org/10.1007/s00572-009-0274-x
  347. ———, R.H. Nilsson, K. Abarenkov, T. Jairus, A. Sadam, I. Saar, M. Bahram, E. Bechem, G. Chuyong, & U. Kõljalg. 2010b. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188: 291–301.  https://doi.org/10.1111/j.1469-8137.2010.03373.x
  348. ———, A. Sadam, M. Zambrano, R. Valencia & M. Bahram. 2010c. Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME Journal 4: 465–471.  https://doi.org/10.1038/ismej.2009.131
  349. ———, L., M. Bahram, T. Jairus, E. Bechem, S. Chinoya, R. Mpumba, M. Leal, E. Randrianjohany, S. Razafi- mandimbison, A. Sadam, T. Naadel & U. Kõljalg. 2011. Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar. Molecular Ecology 20: 3071–3080.  https://doi.org/10.1111/j.1365-294X.2011.05145.x
  350. ———, ———, M. Toots, A.G. Diédhiou, T.L. Henkel, R. Kjoller, M.H. Morris, K. Nara, E. Nouhara, K. Peay, S. Polme, M. Ryberg, M.E. Smith & U. Kõljalg. 2012. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology 21: 4160–4170.  https://doi.org/10.1111/j.1365-294X.2012.05602.x
  351. ———, ———, S. Põlme, U. Kõljalg, N.S. Yorou, R. Wijesundera, L.V. Ruiz, A.M. Vasco-Palacios, P. Quang Thu, A. Suija et al. 2014. Global diversity and geography of soil fungi. Science 346(6213): 1256688.  https://doi.org/10.1126/science.1256688 PubMedCrossRefGoogle Scholar
  352. Tester, M., S.E. Smith, F.A. Smith & N.A. Walker. 1986. Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytologist 103: 375–390.  https://doi.org/10.1111/j.1469-8137.1986.tb00623.x CrossRefGoogle Scholar
  353. Trappe, J.M. 1977. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annual Review of Phytopathology 15: 203-222.  https://doi.org/10.1146/annurev.py.15.090177.001223 CrossRefGoogle Scholar
  354. Treseder, K.K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO2 in field studies. New Phytologist 164: 347–355.  https://doi.org/10.1111/j.1469-8137.2004.01159.x CrossRefGoogle Scholar
  355. Trocha, L.K., E. Weiser & P. Robakowski. 2016. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings. Mycorrhiza 26: 47–56.  https://doi.org/10.1007/s00 572-011-0387-x PubMedCrossRefGoogle Scholar
  356. Turjaman, M., Y. Tamai, H. Segah, S.H. Limin, J.Y. Cha & M.O.K. Tawaraya. 2005. Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improves early growth of Shorea pinanga nursery seedlings. New Forest 30: 67–73.  https://doi.org/10.1007/s11056-004-1954-1 CrossRefGoogle Scholar
  357. ———, ———, ———, ———, M.K. Osaki & K. Tawaraya. 2006. Increase in early growth and nutrient uptake of Shorea seminis seedlings inoculated with two ectomycorrhizal fungi. Journal of Tropical Forest Science 18 (4): 243-249.Google Scholar
  358. Uroz, S., C. Calvaruso, M.P. Turpault, J.C. Pierrat, C. Mustin & P. Frey-Klett. 2007. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the soil bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology 73:3019–3027.  https://doi.org/10.1128/AEM.00121-07 PubMedPubMedCentralCrossRefGoogle Scholar
  359. Utmazian, M.N.D.S., P. Schweiger, P. Sommer, M. Gorfer, J. Strauss & W.W. Wenzel. 2007. Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows grown on polluted soil. Plant, Soil and Environment 53: 158–166.CrossRefGoogle Scholar
  360. van der Heijden, M.G.A. & T.R. Horton. 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology 97: 1139–1150.  https://doi.org/10.1111/j.1365-2745.2009.01570.x CrossRefGoogle Scholar
  361. ———, J.N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boiler, A. Wiemken & I.R. Sanders. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.  https://doi.org/10.1038/23932
  362. ———, R.D. Bardgett & N.M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296–310.  https://doi.org/10.1111/j.1461-0248.2007.01139.x
  363. ———, F.M. Martin, M.A. Selosse & I.R. Sanders. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4): 1406–1423.  https://doi.org/10.1111/nph.13288
  364. van der Putten, W.H., R.D. Bardgett, J.D. Bever, T.M. Bezemer, B.B. Casper, T. Fukami, P. Kardol, J.N. Klironomos, A. Kulmatiski, J.A. Schweitzer, K.N. Suding, T.F.J. Van de Voorde & D.A. Wardle. 2013. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology 101: 265–276.  https://doi.org/10.1111/1365-2745.12054 CrossRefGoogle Scholar
  365. Van Tichelen, K.K., T. Vanstraelen & J.V. Colpaert. 2001. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist 150: 203–213.  https://doi.org/10.1046/j.1469-8137.2001.00081.x CrossRefGoogle Scholar
  366. Villeneuve, N., F. Le Tacon & D. Bouchard. 1991. Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas fir seedlings. Plant Soil 135:95-107.  https://doi.org/10.1007/BF00014782 CrossRefGoogle Scholar
  367. Vozzo, J.A. & E. Hacskaylo. 1971. Inoculation of Pinus caribaea with ectomycorrhizal fungi in Puerto Rico. Forest Science 17: 239-245.Google Scholar
  368. Walbert, K., T.D. Ramsfield, H.J. Ridgway & E.E. Jones. 2010. Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza 20: 209–215.  https://doi.org/10.1007/s00572-009-0277-7 PubMedCrossRefGoogle Scholar
  369. Wallander, H. 2000. Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218: 249–256.  https://doi.org/10.1023/A:1014936217105 CrossRefGoogle Scholar
  370. Wan, S.P., F-Q. Yu, L. Tang, R. Wang, Y. Wang, P-G. Liu, X-H. Wang & Y. Zheng. 2016. Ectomycorrhizae of Tuber huidongense and T. liyuanum with Castanea mollissima and Pinus armandii. Mycorrhiza 26: 249–256.  https://doi.org/10.1007/s00572-015-0663-2 PubMedCrossRefGoogle Scholar
  371. Wang, Q. & L-D. Guo. 2010. Ectomycorrhizal community composition of Pinus tabulaeformis assessed by ITS-RFLP and ITS sequences. Botany 88: 590–595.  https://doi.org/10.1139/B10-023 CrossRefGoogle Scholar
  372. ———, C. Gao & L-D. Guo. 2011. Ectomycorrhizae associated with Castanopsis fargesii (Fagaceae) in a subtropical forest China. Mycological Progress 10: 323–332.  https://doi.org/10.1007/s 11557-010-0705-2
  373. Wang, J., T. Li, X. Wu, & Z. Zhao. 2014. Molecular cloning and functional analysis of a H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biology 118: 453–461.  https://doi.org/10.1016/j.funbio.2014.03.003 PubMedCrossRefGoogle Scholar
  374. Wang, X., J. Liu, D. Long, Q. Han & J. Huang. 2017a. The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across northern China. Mycorrhiza.  https://doi.org/10.1007/s00572-017-0762-3
  375. Wang, L., B. Otgonsuren & D. L. Godbold. 2017b. Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line. Plant Soil 411:467–481.  https://doi.org/10.1007/s11104-016-3047-2 PubMedCrossRefGoogle Scholar
  376. Waseem, M., M. Ducousso, Y. Prin, Q. Domergue, L. Hannibal, C. Majorel, P. Jourand & A. Galiana. 2017. Ectomycorrhizal fungal diversity associated with endemic Tristaniopsis spp. (Myrtaceae) in ultramafic and volcano-sedimentary soils in New Caledonia. Mycorrhiza.  https://doi.org/10.1007/s00572-017-0761-4
  377. Watling, R. & S.P. Abraham. 1992. Ectomycorrhizal fungi of Kashmir forests. Mycorrhiza 2: 81-87.  https://doi.org/10.1007/BF00203254 CrossRefGoogle Scholar
  378. Ważny, R. 2014. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science 71: 801–810.  https://doi.org/10.1007/ s13595-014-0378-0 CrossRefGoogle Scholar
  379. Welander, N.T. & B. Ottosson. 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. Forest Ecology and Management 107: 117–126.  https://doi.org/10.1016/S0378-1127(97)00326-5 CrossRefGoogle Scholar
  380. Willmann, A., M. Weiss & U. Nehls. 2007. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Current Genetics 51: 71–78.  https://doi.org/10.1007/s00294-006-0106-x PubMedCrossRefGoogle Scholar
  381. ———, S. Thomfohrde, R. Haensch & Nehls. 2014. The poplar NRT2 gene family of high affinity nitrate importers: Impact of nitrogen nutrition and ectomycorrhiza formation. Environmental and Experimental Botany 108: 79–88.Google Scholar
  382. Wilson, A.W., K. Hosaka & G.M. Mueller. 2017. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytologist 213: 1862–1873.  https://doi.org/10.1111/nph.14270 PubMedCrossRefGoogle Scholar
  383. Wolfe, B.E. & A. Pringle. 2012. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME Journal 6: 745–755.  https://doi.org/10.1038/ismej.2011.155 PubMedCrossRefGoogle Scholar
  384. ———, F. Richard, H.B. Cross & A. Pringle. 2010. Distribution and abundance of the introduced ectomycorrhizal fungus Amanita phalloides in North America. New Phytologist 185: 803–816.  https://doi.org/10.1111/j.1469-8137.2009.03097.x
  385. ———, R.E. Tulloss & A. Pringle. 2012. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS ONE 7: e39597.  https://doi.org/10.1371/ journal.pone.0039597
  386. Wu, T., J.N. Sharda & R.T. Koide. 2003. Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytologist 159: 131–139.  https://doi.org/10.1046/j.1469-8137.2003.00800.x CrossRefGoogle Scholar
  387. Xu, H., M. Kemppainen, W. El Kayal, S.H. Lee, A.G. Pardo, J.E.K. Cooke et al. 2015. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. New Phytologist 205: 757–770.  https://doi.org/10.1111/nph.13098 PubMedCrossRefGoogle Scholar
  388. ———, A. Navarro-Ródenas, J.E.K. Cooke & J.J. Zwiazek. 2016. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. Mycorrhiza 26: 19–31.  https://doi.org/10.1007/s00572-015-0643-6
  389. Yamada, A., T. Ogura & M. Ohmasa. 2001. Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis. II. Morphology of mycorrhizas in open-pot soil. Mycorrhiza 11: 67–81.  https://doi.org/10.1007/s005720000093 CrossRefGoogle Scholar
  390. Yuwa-Amornpitak, T., T. Vichitsoonthonkul, M. Tanticharoen, S. Cheevadhanarak & S. Ratchadawong. 2006. Diversity of ectomycorrhizal fungi on Dipterocarpaceae in Thailand. Journal of Biological Sciences 6: 1059–1064.  https://doi.org/10.3923/jbs.2006.1059.1064 CrossRefGoogle Scholar
  391. Zak, B. 1973. Classification of ectomycorrhizae. In: G.C. Marks & T.T. Kozlowski (Eds.), Ectomycorrhizae, Acadmic press, New York, pp. 43-78.CrossRefGoogle Scholar
  392. Zhang, H-H., M. Tang, H. Chen & C-L. Zheng. 2010. Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings. European Journal of Soil Biology 46: 55–61.  https://doi.org/10.1016/j.ejsobi.2009.10.005 CrossRefGoogle Scholar
  393. Zhang, J., T. Taniguchi, R. Tateno, M. Xu, S. Du, G-B. Liu & N. Yamanaka. 2013. Ectomycorrhizal fungal communities of Quercus liaotungensis along local slopes in the temperate oak forests on the Loess Plateau, China. Ecological Research 28:297–305.  https://doi.org/10.1007/s11284- 012-1017-6 CrossRefGoogle Scholar
  394. Zheng, R., J. Wang, M. Liu, G. Duan, X. Gao, S. Bai & Y. Han. 2016. Molecular cloning and functional analysis of two phosphate transporter genes from Rhizopogon luteolus and Leucocortinarius bulbiger, two ectomycorrhizal fungi of Pinus tabulaeformis. Mycorrhiza 26(7): 633-644.  https://doi.org/10.1007/s00572-016-0702-7 PubMedCrossRefGoogle Scholar
  395. Zoll, J., E. Snelders, P.E. Verweij & W.J.G. Melchers. 2016. Next-Generation Sequencing in the Mycology Lab. Current Fungal Infection Reports 10: 37–42.  https://doi.org/10.1007/s12281-016-0253-6 PubMedPubMedCentralCrossRefGoogle Scholar
  396. Zong, K., J. Huang, K. Nara, Y. Chen, Z. Shen & C. Lian. 2015. Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. Journal of Forest Research 20(6): 493–500.  https://doi.org/10.1007/s10310-015-0506-1 CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2017

Authors and Affiliations

  1. 1.Department of BotanyPunjabi UniversityPatialaIndia

Personalised recommendations