Advertisement

Kew Bulletin

, 74:50 | Cite as

Aster dianchuanensis (Asteraceae, Astereae), a new species from Yunnan and Sichuan, China

  • Jia-Wei Xiao
  • Jun-Jie Liao
  • Wei-Ping LiEmail author
Article
  • 15 Downloads

Summary

Aster dianchuanensis J.W.Xiao & W.P.Li (Asteraceae, Astereae), a new species from Yunnan and Sichuan, China, is described and illustrated with photographs. Morphological data and a phylogenetic analysis based on a combined ITS, ETS and trnL-F dataset, suggest that A. dianchuanensis is a distinct species closely related to A. tongolensis. The new species differs from the latter by its few-branched stems (vs simple in A. tongolensis), basal rosette and lower cauline leaves marcescent at anthesis (vs present at anthesis), larger middle cauline leaves (3 – 5.8 × 0.7 cm – 1.2 vs 1 – 4 × 0.2 – 0.9 cm), capitula 2 – 5 in lax corymbiform inflorescence (vs solitary capitula), 3 – 4 (5 –)-seriate phyllaries (vs 2- or 3-seriate), unequal (rarely equal) disc floret lobes (vs equal, or rarely unequal).

Key Words

Compositae molecular phylogeny morphological comparisons taxonomy 

Notes

Acknowledgements

We thank the reviewers for their useful comments, suggestions and questions. We also thank the curators of CDBI, E, GH, IBSC, KUN, P, PE and WU for allowing us to examine specimens; Mr Zhi Li & Ms Yi-Chang Xiong for help with the experiments. This work was supported by grants from the National Natural Science Foundation of China (NSFC-31370265), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486), the Hunan Provincial Construct Program of the Key Discipline in Ecology (0713) and Hunan Provincial Key Laboratory of Crop Sterility Mechanism and Sterile Germplasm Resources Innovation and Application (2016TP1011).

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: B. N. Petrov & F. Caski (eds), Proceedings of the Second International Symposium on Information Theory, pp. 267 – 281. Akademiai, Kiado Budapest.Google Scholar
  2. Anderson, L. A. (1954). Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 57(3): 242 – 244.CrossRefGoogle Scholar
  3. Baldwin, B. G. & Markos, S. (1998). Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S nrDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molec. Phylogenet. Evol. 10: 449 – 463.CrossRefGoogle Scholar
  4. Chen, Y. L., Brouillet, L. & Semple, J. C. (2011). Aster. In: Z. Y. Wu & P. H. Raven (eds), Flora of China, pp. 574 – 632. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis.Google Scholar
  5. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle Scholar
  6. Doyle, J. J. & Doyle, J. D. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11 – 15.Google Scholar
  7. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792 – 1797.CrossRefGoogle Scholar
  8. Farris, S. J., Kalersjo, M., Kluge, A. G. & Bult, C. (1995). Testing significance of incongruence. Cladistics 10: 315 – 319.CrossRefGoogle Scholar
  9. Huelsenbeck, J. P. & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754 – 755.CrossRefGoogle Scholar
  10. IUCN (2012). IUCN red list categories and criteria: version 3.1. Gland and Gambridge.Google Scholar
  11. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403 – 405.CrossRefGoogle Scholar
  12. Li, W. P., Yang, F. S., Jivkova, T. & Yin, G. S. (2012). Phylogenetic relationships and generic delimitation of Eurasian Aster (Asteraceae: Astereae) inferred from ITS, ETS and trnL-F sequence data. Ann. Bot. 109: 1341 – 1357.CrossRefGoogle Scholar
  13. Li, Z., Yin, G. S., Tang, M. & Li, W. P. (2017). Aster oliganthus (Asteraceae, Astereae), a new species from western Sichuan, China, based on morphological and molecular data. Phytotaxa 326(1): 054 – 062.CrossRefGoogle Scholar
  14. Ling, R., Chen, Y. L. & Shih, C. (1985). Astereae. In: R. Ling & Y. L. Chen (eds), Flora Reipublicae Popularis Sinicae, pp. 70 – 353. Science Press, Beijing.Google Scholar
  15. Markos, S. & Baldwin, B. G. (2001). Higher-level relationships and major lineages of Lessingia (Compositae, Astereae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Syst. Bot. 26: 168 – 183.Google Scholar
  16. Muller, K., Muller, J. & Quandt, D. (2010). PhyDE-Phylogenetic Data Editor, version 0.9971. Available from: http://www.phyde.de/index.html. Accessed Dec. 2017.
  17. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688 – 2690.CrossRefGoogle Scholar
  18. Swofford, D. L. (2001). PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA.Google Scholar
  19. Taberlet, P. T., Gielly, L., Patou, G. & Bouvet, J. (1991). Universal primers for amplication of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105 – 1109.CrossRefGoogle Scholar
  20. Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W. H., Li, D. Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. & Smith, G. F. (eds) (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Veg. 159. Glashütten, Koeltz Botanical Books.Google Scholar
  21. White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols: A Guide to Methods and Application, pp. 315 – 322. Academic Press, San Diego.Google Scholar
  22. Xiao, J. W., Liao, J. J. & Li, W. P. (2019). Aster brevicaulis (Asteraceae, Astereae), a new species from western Sichuan, China. Phytotaxa 399(1): 001 – 013.CrossRefGoogle Scholar
  23. Zhang, G. J., Hu, H. H., Zhang, C. F., Tian, X. J., Peng, H. & Gao, T. G. (2015). Inaccessible biodiversity on limestone cliffs: Aster tianmenshanensis (Asteraceae), a new critically endangered species from China. PLoS ONE 10(8): 1 – 16.Google Scholar

Copyright information

© The Board of Trustees of the Royal Botanic Gardens, Kew 2019

Authors and Affiliations

  1. 1.College of Life SciencesHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations