Multicellular growth of the Basidiomycota phytopathogen fungus Sporisorium reilianum induced by acid conditions

  • Domingo Martínez-SotoEmail author
  • John Martin Velez-Haro
  • Claudia Geraldine León-Ramírez
  • Edgardo Galán-Vásquez
  • Bibiana Chávez-Munguía
  • José Ruiz-Herrera
Original Article


Fungi are considered model organisms for the analysis of important phenomena of eukaryotes. For example, some of them have been described as models to understand the phenomenon of multicellularity acquisition by different unicellular organisms phylogenetically distant. Interestingly, in this work, we describe the multicellular development in the model fungus S. reilianum. We observed that Sporisorium reilianum, a Basidiomycota cereal pathogen that at neutral pH grows with a yeast-like morphology during its saprophytic haploid stage, when incubated at acid pH grew in the form of multicellular clusters. The multicellularity observed in S. reilianum was of clonal type, where buds of “stem” cells growing as yeasts remain joined by their cell wall septa, after cytokinesis. The elaboration and analysis of a regulatory network of S. reilianum showed that the putative zinc finger transcription factor CBQ73544.1 regulates a number of genes involved in cell cycle, cellular division, signal transduction pathways, and biogenesis of cell wall. Interestingly, homologous of these genes have been found to be regulated during Saccharomyces cerevisiae multicellular growth. In adddition, some of these genes were found to be negatively regulated during multicellularity of S. reilianum. With these data, we suggest that S. reilianum is an interesting model for the study of multicellular development.


Sporisorium reilianum Multicellular growth Acid conditions Fungal development 



Thanks are given to Prof. Jan Schirawski (Institute of Applied Microbiology, RWTH Aachen University, Germany), for making available the S. reilianum strains. We also thank Lizbeth Salazar-Villatoro (CINVESTAV I.P.N., Zacatenco Unit), Marco A. Mancilla-Avila (Universidad Autónoma de San Luis Potosí), and Mayela F. Salazar-Chávez (CINVESTAV, Irapuato Unit), for assistance in some analyses. This work was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), México

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interests.

Supplementary material

12223_2019_755_MOESM1_ESM.docx (740 kb)
ESM 1 (DOCX 14 kb)
12223_2019_755_MOESM2_ESM.docx (740 kb)
ESM 2 (DOCX 15 kb)


  1. Arias Del Angel JA, Escalante A, Martínez-Castilla L et al (2017) An evo-devo perspective on multicelular development of Myxobacteria. J Exp Zool Part B Mol Dev Evol 328:165–178. CrossRefGoogle Scholar
  2. Banuett F, Herskowitz I (1994) Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp Mycol 18:247–266. CrossRefGoogle Scholar
  3. Bhaskaran S, Smith RH (1993) Carbohydrates, inertase activity, growth and dimorphism in Sporisorium reilianum. Mycopathologia 122:35–41. CrossRefGoogle Scholar
  4. Biernaskie JM, West SA (2015) Cooperation, clumping and the evolution of multicellularity. Proc Biol Sci 282:20151075. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27-36.<27::AID-INBI4>3.0.CO;2-6..CrossRefGoogle Scholar
  6. Boraas M, Seale D, Boxhorn J (1998) Phagotrophy by a flagellate selects for colonial prey: a posible origin of multicellularity. Evol Ecol 12:153–164. CrossRefGoogle Scholar
  7. Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876. CrossRefPubMedGoogle Scholar
  8. Chávez-Munguía B, Martínez-Palomo A (2011) High-resolution electron microscopical study of cyst walls of Entamoeba spp. J Eukaryot Microbiol 58:480–486. CrossRefPubMedGoogle Scholar
  9. Du Z, Zhang Y, Li L (2015) The yeast prion [SWI(+)] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression. Cell Rep 13:2865–2878. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654. CrossRefGoogle Scholar
  11. Holliday R (1974) Ustilago maydis. In: King RC (ed) The handbook of genetics. Plenum Press, New York, pp 575–595Google Scholar
  12. Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53:969–983. CrossRefPubMedGoogle Scholar
  13. Kessin RH, Gundersen GG, Zaydfudim V, Grimson M (1996) How cellular slime molds evade nematodes. Proc Natl Acad Sci U S A 93:4857–4861. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Klose J, de Sá MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilago maydis. Mol Microbiol 52:823–835. CrossRefPubMedGoogle Scholar
  15. Knoll A (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239. CrossRefGoogle Scholar
  16. Koschwanez JH, Foster KR, Murray A (2011) Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol 9:e1001122. CrossRefPubMedGoogle Scholar
  17. Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15. CrossRefPubMedGoogle Scholar
  18. Kües U, Navarro-González M (2015) How do Agaricomycetes shape their fruiting bodies? morphological aspects of development. Fungal Biol Rev 29:63–97. CrossRefGoogle Scholar
  19. León-Ramírez CG, Cabrera-Ponce JL, Martínez-Soto D, Sánchez-Arreguin A, Aréchiga-Carvajal ET, Ruiz-Herrera J (2017) Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda. Fungal Genet Biol 101:34–45. CrossRefPubMedGoogle Scholar
  20. Martinez C, Roux C, Jauneau A, Dargent R (2002) The biological cycle of Sporisorium reilianum f. sp. Zeae: an overview using microscopy. Mycologia 94:505–514. CrossRefPubMedGoogle Scholar
  21. Martínez-Soto D, Velez-Haro JM, León-Ramírez CG, Ruiz-Medrano R, Xoconostle-Cázares B, Ruiz-Herrera J (2019) The cereal phytopathogen Sporisorium reilianum is able to infect the non-natural host Arabidopsis thaliana. Eur J Plant Pathol 153:417–427. CrossRefGoogle Scholar
  22. Maynard-Smith J, Szathmary E (1995) Major transitions in evolution. Spektrum, New YorkGoogle Scholar
  23. Mora van Cauwelaert E, Arias Del Angel J, Benítez M et al. (2016) Physicochemical factors in the organization of multicellular aggregates and plants. In: Niklas K, Newman S (eds) Multicellularity: origins and evolution, The MIT Press, Vienna, pp71-85.Google Scholar
  24. Mowat E, Williams C, Jones B et al (2019) The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol 47:S120–S126. CrossRefGoogle Scholar
  25. Nagy LG, Kovács GM, Krizsán K (2018) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 93:1778–1794. CrossRefPubMedGoogle Scholar
  26. Niklas KJ (2014) The evolutionary-developmental origins of multicellularity. Am J Bot 101:6–25. CrossRefPubMedGoogle Scholar
  27. Oud B, Guadalupe-Medina V, Nijkamp JF, de Ridder D, Pronk JT, van Maris A, Daran JM (2013) Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110:E4223–E4231. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Palande AS, Kulkarni SV, León-Ramírez C et al (2014) Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch Microbiol 196:545–556. CrossRefPubMedGoogle Scholar
  29. Palomeros-Suárez PA, Massange-Sánchez JA, Sánchez-Segura L et al (2017) AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. Planta 245:623–640. CrossRefGoogle Scholar
  30. Pfeiffer T, Bonhoeffer S (2003) An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci U S A 100:1095–1098. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Poloni A, Schirawski J (2016) Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Mol Plant Pathol 17:741–754. CrossRefPubMedGoogle Scholar
  32. Ratcliff WC, Frankhauser JD, Rogers DW et al (2015) Origins of multicellular evolvability in snowflake yeast. Nat Commun 6:6102. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rensing SA (2016) (Why) Does evolution favour embryiogenesis? Trends Plant Sci 21:562–573. CrossRefPubMedGoogle Scholar
  34. Rivera-Yoshida N, Arias Del Angel JA, Benítez M (2018) Microbial multicellular development: mechanical forces in action. Curr Opin Genet Dev 51:37–45. CrossRefPubMedGoogle Scholar
  35. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251. CrossRefPubMedGoogle Scholar
  36. Ruiz-Herrera J, León-Ramírez CG, Guevara-Olvera L et al (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 141:695–703. CrossRefGoogle Scholar
  37. Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of bio molecular interaction networks. Genome Res 13:2498–2504. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18. CrossRefPubMedGoogle Scholar
  41. Szabo R (1999) Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folina Microbiol (Praha) 44:19–24. CrossRefGoogle Scholar
  42. Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos A, Pedreira T, Sá-Correia I (2018) YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucleic Acids Res 46:D348–D353. CrossRefPubMedGoogle Scholar
  43. Zhao Y (2015) The molecular basis of symptom formation in Sporisorium reilianum. Doctoral dissertation, RWTH Aachen University, Aachen.Google Scholar
  44. Zhao X, Ye J, Wei L et al (2015) Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. Crop J 3:87–95. CrossRefGoogle Scholar
  45. Zuther K, Kahnt J, Utermark J, Imkampe J, Uhse S, Schirawski J (2012) Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor. Mol Plant-Microbe Interact 25:1230–1237. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  • Domingo Martínez-Soto
    • 1
    • 2
    • 3
    • 4
    Email author
  • John Martin Velez-Haro
    • 2
    • 5
  • Claudia Geraldine León-Ramírez
    • 2
  • Edgardo Galán-Vásquez
    • 2
  • Bibiana Chávez-Munguía
    • 6
  • José Ruiz-Herrera
    • 2
  1. 1.Ingeniería en Innovación Agrícola SustentableInstituto Tecnológico Superior de Los ReyesLos ReyesMéxico
  2. 2.Departamento de Ingeniería Genética, Unidad IrapuatoCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuatoMéxico
  3. 3.Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideUSA
  4. 4.Ingeniería en Innovación Agrícola SustentableInstituto Tecnológico Superior de Los ReyesLibertadMéxico
  5. 5.Departamento de Ingeniería BioquímicaInstituto Tecnológico de CelayaGuanajuatoMéxico
  6. 6.Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalCd. de MéxicoMéxico

Personalised recommendations