Managing urinary tract infections through phage therapy: a novel approach

  • Shikha Malik
  • Parveen Kaur Sidhu
  • J.S. Rana
  • Kiran NehraEmail author


Upsurge in the instances of antibiotic-resistant uropathogenic Escherichia .coli (UPECs) strains has repositioned the attention of researchers towards a century old antimicrobial approach popularly known as phage therapy. Rise of extended spectrum beta lactamase (ESBL) and biofilm producing strains has added another step of hurdle in treatment of uropathogens with conventional antibiotics, thus providing a further impetus for search for exploring new therapeutic measures. In this direction, bacteriophages, commonly called phages, are recently being considered as potential alternatives for treatment of UPECs. Phages are the tiniest form of viruses which are ubiquitous in nature and highly specific for their host. This review discusses the possible ways of using natural phages, genetically engineered phages, and phage lytic enzymes (PLEs) as an alternative antimicrobial treatment for urinary tract infections. The review also sheds light on the synergistic use of conventional antibiotics with phages or PLEs for treatment of uropathogens. These methods of using phages and their derivatives, alone or in combination with antibiotics, have proved fruitful so far in in vitro studies. However, in vivo studies are required to make them accessible for human use. The present review is a concerted effort towards putting together all the information available on the subject.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y (2019) The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11:96. CrossRefPubMedCentralGoogle Scholar
  2. Abedon ST, García P, Mullany P, Aminov R (2017) Editorial: phage therapy: past, present and future. Front Microbiol 8:981. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ackermann H-W, Krisch HM (1997) A catalogue of T4-type bacteriophages. Arch Virol 142:2329–2345CrossRefPubMedGoogle Scholar
  4. Akova M (2016) Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 7:252–266.
  5. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:1–7. CrossRefGoogle Scholar
  6. Bedi MS, Verma V, Chhibber S (2009) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25:1145–1151. CrossRefGoogle Scholar
  7. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289PubMedPubMedCentralGoogle Scholar
  8. Bolocan AS, Callanan J, Forde A, Ross P, Hill C (2016) Phage therapy targeting Escherichia coli—a story with no end? FEMS Microbiol Lett 363:1–5. CrossRefGoogle Scholar
  9. Briers Y, Lavigne R (2015) Breaking barriers: expansion of the use of endolysins as novel antibacterials against gram-negative bacteria. Future Microbiol 10:377–390. CrossRefPubMedGoogle Scholar
  10. Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay JP, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, Lavigne R (2014a) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3774–3784. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP et al (2014b) Engineered endolysin-based “artilysins” to combat multidrugresistant gram-negative pathogens. mBio 5:e01379-14. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buonanno AP, Damweber BJ (2006) Review of urinary tract infection. US Pharm 31:HS26–HS36Google Scholar
  13. Burrowes B, Harper DR, Anderson J, McConville M, Enright MC (2011) Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti-Infect Ther 9:775–785. CrossRefPubMedGoogle Scholar
  14. Capparelli R, Ventimiglia I, Roperto S, Fenizia D, Iannelli D (2006) Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin Microbiol Infect 12:248–253. CrossRefPubMedGoogle Scholar
  15. Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274Google Scholar
  16. Chadha P, Katare OP, Chibber S (2016) In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 99:68–77CrossRefPubMedGoogle Scholar
  17. Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12:e0168615. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM, Boerlin P (2012) Bacteriophages with the ability to degrade uropathogenic Escherichia Coli biofilms. Viruses 4:471–487. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM (2007) Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2:e799. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  21. Coulter LB, McLean RJC, Rohde RE, Aron GM (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 6:3778–3786. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Davies J (2008) Resistance redux: infectious diseases, antibiotic resistance and the future of mankind. EMBO Rep 9:S18–S21. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Delbruck M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23:643–660CrossRefPubMedPubMedCentralGoogle Scholar
  24. Detweiler K, Mayers D, Fletcher SG (2015) Bacteruria and urinary tract infections in the elderly. Urol Clin North Am 42:561–568CrossRefPubMedGoogle Scholar
  25. D'Herelle F (1917) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr. Roux. Res Microbiol 158:553–554. CrossRefGoogle Scholar
  26. DooIittle MM, Cooney JJ, Caldwell DE (1995) Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can J Microbiol 41:12–18CrossRefGoogle Scholar
  27. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496CrossRefPubMedGoogle Scholar
  28. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. CrossRefPubMedGoogle Scholar
  29. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573–e02517. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660CrossRefPubMedGoogle Scholar
  32. Foxman B (2013) Urinary tract infection. In: Goldman MB, Troisi R and Rexrode KM (ed) Women and Health, 2nd edn. Academic Press, Cambridge, pp 553–564Google Scholar
  33. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378CrossRefPubMedGoogle Scholar
  34. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54:397–404. CrossRefPubMedGoogle Scholar
  35. Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gill JJ, Hyman P (2010) Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14CrossRefPubMedGoogle Scholar
  37. Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27. CrossRefPubMedGoogle Scholar
  38. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk Matysiak E, Borysowski J, Weber Dąbrowska B (2019) Phage therapy: current status and perspectives. Med Res Rev:1–5.
  39. Griebling TL (2004) Urinary tract infection in women. In: Litwin MS, Saigal CS (eds) Urologic diseases in America. US Government Publishing Office, Washington DC, pp 153–183Google Scholar
  40. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One 7:1–8. CrossRefGoogle Scholar
  41. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A novel antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120CrossRefPubMedGoogle Scholar
  43. Gutiérrez D, Fernández L, Rodríguez A, García P (2018) Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? mBio 9:e01923-17.
  44. Hankin ME (2011) The bactericidal action of the waters of the Jamuna and Ganges rivers on cholera microbes Ann. Inst. Pasteur 10:511–523 (1896). Bacteriophage 1:117–126. CrossRefGoogle Scholar
  45. Henning U, Jann K (1979) Two-component nature of bacteriophage T4 receptor activity in Escherichia coli K-12. J Bacteriol 137:664–666PubMedPubMedCentralGoogle Scholar
  46. Hotchandani R, Aggarwal KK (2012) Urinary tract infections in women. Indian J Clin Pract 23:187–192Google Scholar
  47. Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248. CrossRefPubMedGoogle Scholar
  48. Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21:26–59. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kamal F, Dennis JJ (2015) Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81:1132–1138. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. CrossRefPubMedGoogle Scholar
  51. Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54:286–291. CrossRefPubMedGoogle Scholar
  52. Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K, Myung H (2018) Phage antibiotic synergy via delayed lysis. Appl Environ Microbiol 84:e02085–e02018. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kline KA, Bowdish DM (2016) Infection in an aging population. Curr Opin Microbiol 29:63–67. CrossRefPubMedGoogle Scholar
  54. Knezevic P, Curcin S, Aleksic V, Petrusic M, Vlaski L (2013) Phage-antibiotic synergism: a possible approach to combating Pseudomonas aeruginosa. Res Microbiol 164:55–60. CrossRefPubMedGoogle Scholar
  55. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, Johnson DE, Mobley HL (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lehman SM, Donlan RM (2015) Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother 59:1127–1137. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lenski RE (1984) Two-step resistance by Escherichia coli B to bactreriophage T2. Genetics 107:1–7PubMedPubMedCentralGoogle Scholar
  59. Letrado P, Corsini B, Díez-Martínez R, Bustamante N, Yuste JE, García P (2018) Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus. Future Microbiol 13:1215–1223. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8:162–173. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241. CrossRefPubMedGoogle Scholar
  62. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524–531. CrossRefPubMedGoogle Scholar
  65. Lukacik P, Barnard T, Keller PW et al (2012a) Structural engineering of a phage lysin that target gram-negative pathogens. Proc Natl Acad Sci U S A 109:9857–9862. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lukacik P, Barnard TJ, Buchanan SK (2012b) Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Biochem Soc Trans 40:1503–1506. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ma Q, Guo Z, Gao C, Zhu R, Wang S, Yu L, Qin W, Xia X, Gu J, Yan G, Lei L (2017) Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C-terminus. Antonie Leeuwenhoek 110:347–355. CrossRefPubMedGoogle Scholar
  68. Manning SD (2010) Escherichia coli infections. Deadly Disease and Epidemics. Chelsea House Publishers, NewYorkGoogle Scholar
  69. Martens E, Demain AL (2017) The antibiotic resistance crisis, with a focus on the United States. J Antibiot 70:520–526. CrossRefPubMedGoogle Scholar
  70. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Imai S, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. CrossRefPubMedPubMedCentralGoogle Scholar
  71. McCallin S, Sacher JC, Zheng J, Chan BK (2019) Current state of compassionate phage therapy. Viruses 11:343. CrossRefPubMedCentralGoogle Scholar
  72. Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP (2018) Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 8:17559. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Montag D, Hashemolhosseini S, Henning U (1990) Receptor recognizing proteins of T-even type bacteriophages. The receptor recognizing area of proteins 37 of phages T4 Tula and Tulb. J Mol Biol 216:327–334. CrossRefPubMedGoogle Scholar
  74. Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271CrossRefPubMedGoogle Scholar
  75. Nishikawa H, Yasuda M, Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Ujihara T, Shimizu Y, Shuin T, Matsuzaki S (2008) T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch Virol 153:507–515. CrossRefPubMedGoogle Scholar
  76. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que Y-A (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712. CrossRefPubMedGoogle Scholar
  77. Oliveira H, Sao-Jose C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10:292. CrossRefPubMedCentralGoogle Scholar
  78. Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S (2011a) A novel bacteriophage tail-associated muralytic enzyme (TAME) from phage K and its development into a potent antistaphylococcal protein. BMC Microbiol 11:226. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N, Padmanabhan S, Sriram B, Ramachandran J (2011b) Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 11:195. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Pei R, Lamas-Samanamud GR (2014) Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol 80:5340–5348. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pena C, Gudiol C, Tubau F, Saballs M, Pujol M, Dominguez MA, Calatayud L, Ariza J, Gudiol F (2006) Risk-factors for acquisition of extended-spectrum β-lactamase-producing Escherichia coli among hospitalised patients. Clin Microbiol Infect 12:279–284. CrossRefPubMedGoogle Scholar
  82. Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80:523–543. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pires DP, Melo LDR, Vilas Boas D, Sillankorva S, Azeredo J (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56. CrossRefPubMedGoogle Scholar
  84. Pirnay JP, De Vos D, Verbeken G et al (2010) The phage therapy paradigm: Prêt-à-porter or Sur-mesure? Pharm Res 28:934–937. CrossRefPubMedGoogle Scholar
  85. Pushpalatha KS (2008) Urinary tract infection and management. J Nighting Nursing Times 4:28–32Google Scholar
  86. Rodriguez L, Martinez B, Zhou Y, Rodriguez A, Donovan DM, Garcia P (2011) Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vb_SauS-phiiPLA88. BMC Microbiol 11:138. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P (2016) Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol 36:542–552. CrossRefPubMedGoogle Scholar
  88. Ronald A (2003) The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49:71–82. CrossRefGoogle Scholar
  89. Ryan EM, Mahmoud Y, Alkawareek RF, Donnelly GBF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398. CrossRefPubMedGoogle Scholar
  90. Salazar O, Asenjo JA (2007) Enzymatic lysis of microbial cells. Biotechnol Lett 29:985–994. CrossRefPubMedGoogle Scholar
  91. Salman AE, Abdulamir AS (2014) Assessment of bacteriophage cocktails used in treating multiple-drug resistant Pseudomonas aeruginosa. Int J Curr Microbiol App Sci 3:711–723Google Scholar
  92. Samsygina GA, Boni EG (1984) Bacteriophages and phage therapy in pediatric practice. Pediatriia 4:67–70Google Scholar
  93. Sao-José C (2018) Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics 7:29. CrossRefPubMedCentralGoogle Scholar
  94. Schirmeier E, Zimmermann P, Hofmann V, Biebl M, Gerstmans H, Maervoet VE, Briers Y (2017) Inhibitory and bactericidal effect of Artilysin® Art-175 against colistin-resistant mcr-1-positive Escherichia coli isolates. Int J Antimicrob Agents 51:528–529. CrossRefPubMedGoogle Scholar
  95. Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1–5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121:309–319. CrossRefPubMedGoogle Scholar
  98. Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, Azeredo J (2010) Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol 62:1128–1132. CrossRefPubMedGoogle Scholar
  99. Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery - foundation in natural products. Biochem Pharmacol 71:1006–1015. CrossRefPubMedGoogle Scholar
  100. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tacconelli; Magrini (2017) Global priority list of antiobiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. Accessed 27 February 2017
  102. Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H (2004) Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64:270–274CrossRefPubMedGoogle Scholar
  103. Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann H-W, Krisch HM (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME (2014) A Window of Opportunity to Control the Bacterial Pathogen Pseudomonas aeruginosa Combining Antibiotics and Phages. PLoS ONE 9:e106628.
  105. Twort FW (1915) An investigation on the nature of the ultramicroscopic viruses. Lancet 186:1241–1243. CrossRefGoogle Scholar
  106. Ujmajuridze A, Chanishvili N, Goderdzishvili M, Leitner L, Mehnert U, Chkhotua A, Kessler TM, Sybesma W (2018) Adapted bacteriophages for treating urinary tract infections. Front Microbiol 9:1832. CrossRefPubMedPubMedCentralGoogle Scholar
  107. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411PubMedPubMedCentralGoogle Scholar
  108. Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J (2014) Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 5:317. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Vouillamoz J, Entenza JM, Giddey M, Fischetti VA, Moreillon P, Resch G (2013) Bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a mouse model of pneumococcal bacteraemia. Int J Antimicrob Agents 42:416–421. CrossRefPubMedGoogle Scholar
  110. Wang S, Gu J, Lv M, Guo Z, Yan G, Yu L, du C, Feng X, Han W, Sun C, Lei L (2017) The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. J Microbiol 55:403–408. CrossRefPubMedGoogle Scholar
  111. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29:745–758CrossRefPubMedGoogle Scholar
  112. Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, Uchiyama J, Sakurai S, Matsuzaki S, Imai S, Yamaguchi K (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452. CrossRefPubMedGoogle Scholar
  113. Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Yen M, Cairns LS, Camilli A (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 8:1–7. CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyDeenbandhu Chhotu Ram University of Science and TechnologySonipatIndia
  2. 2.National Institute of Food Technology Entrepreneurship and ManagementSonipatIndia

Personalised recommendations