Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens

  • Daiani Cristina Savi
  • Sandriele Aparecida Noriler
  • Larissa V. Ponomareva
  • Jon S. Thorson
  • Jürgen Rohr
  • Chirlei GlienkeEmail author
  • Khaled A. ShaabanEmail author
Original Article


Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(−)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (−)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.



We thank the College of Pharmacy NMR Center (University of Kentucky) for NMR support.


This work was supported by National Institutes of Health grant R24 OD21479 (JST), the University of Kentucky College of Pharmacy, the University of Kentucky Markey Cancer Center, and the National Center for Advancing Translational Sciences (UL1TR001998 and UL1TR000117). Additional support came from NIH grants CA 91091, GM 105977, and an Endowed University Professorship in Pharmacy to J.R. It was also supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brazil grant 424738/2016-3 and CNPq309971/2016-0 to C.G., and CAPES-Brazil—grant to D.C.S.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12223_2019_746_MOESM1_ESM.docx (15.3 mb)
ESM 1 (DOCX 15641 kb)


  1. Abbas M, Elshahawi SI, Wang X, Ponomareva LV, Sajid I, Shaaban KA, Thorson JS (2018) Puromycins B-E, naturally occurring amino-nucleosides produced by the Himalayan isolate Streptomyces sp. PU-14G. J Nat Prod 81:2560–2566CrossRefGoogle Scholar
  2. Agostini JP, Timmer LW, Mitchell DJ (1992) Morphological and pathological characteristics of strains of Colletotrichum gloeosporioides from Citrus. APSnet 82:1377–1382Google Scholar
  3. Aldridge DC, Turner WB (1970) Metabolites of Helminthosporium monoceras: structures of monocerin and related benzopyrans. J Chem Soc Perkin 1:2598–2600Google Scholar
  4. Anderson JR, Edwards RL, Whalley AJS (1983) Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family xylariaceae. J Chern Soc Perkin Trans 1:2185–2192CrossRefGoogle Scholar
  5. Anke H, Zahner H (1978) Metabolic products of microorganisms. 170. On the antibiotic activity of cladosporin. Arch Microbiol 116:253–257CrossRefGoogle Scholar
  6. Arora D, Kumar A, Gupta P, Chashoo G, Jaglan S (2017) Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: a secondary metabolite isolated from Xylaria psidii. Bioorg Med Chem Lett 27:5126–5130CrossRefGoogle Scholar
  7. Baldassari RB, Reis RF, Goes A (2006) Susceptibility of fruits of the ‘Valencia’ and ‘Natal’ sweet orange varieties to Guignardia citricarpa and the influence of the coexistence of healthy and symptomatic fruits. Fitopatol Brasil 31:337–341CrossRefGoogle Scholar
  8. Baldassari RB, Wickert E, Goes A (2007) Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. Eur J Plant Pathol 120:103–110CrossRefGoogle Scholar
  9. Ballio A, Barcellona S, Santurbano B (1966) 5-Methylmellein, a new natural dihydroisocoumarin. Tetrahedron Lett 7:3723–3726CrossRefGoogle Scholar
  10. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  11. Carpenter RC, Sotheeswaran SS, Sultanbanwa MU, Balasubramaniam S (1980) (−)-5-Methylmellein and catechol derivatives from four Semecarpus species. Phytochemistry 19:445–447CrossRefGoogle Scholar
  12. Carvalho CR, Ferreira-da Silva A, Wedge DE, Cantrel CL, Rosa LH (2018) Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Can J Microbiol 6:1–9CrossRefGoogle Scholar
  13. Che J, Liu B, Liu G, Chen Q, Lan J (2017) Volatile organic compounds produced by Lysinibacillus sp. FJAT-4748 possess antifungal activity against Colletotrichum acutatum. Biocontrol Sci Tech 27:1349–1362CrossRefGoogle Scholar
  14. Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540CrossRefGoogle Scholar
  15. Chutulo EC, Chalannavar RK (2018) Endophytic mycoflora and their bioactive compounds from Azadiracha indica: a comprehensive review. J Fungi 4:42CrossRefGoogle Scholar
  16. Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943CrossRefGoogle Scholar
  17. Cochrane RV, Sanichar R, Lambkin GR, Reiz B, Xu W, Tang Y, Vederas JC (2016) Production of new cladosporin analogues by reconstitution of the polyketide synthases responsible for the biosynthesis of this antimalarial agent. Angew Chem Int Ed 55:664–668CrossRefGoogle Scholar
  18. de Alvarenga MA, Fo RB, Gottlieb OR, de Dias JP, Magalhães AF, Magalhães EG, de Magalhães GC, Magalhães MT, Maia JGS, Marques R, Marsaioli AJ, Mesquita AAL, de Moraes AA, de Oliveira AB, de Oliveira GG, Pedreira G, Pereira SK, Pinho SLV, Sant’ana AEG, Santos CC (1978) Dihydroisocoumarins and phthalide from wood samples infested by fungi. Phytochemistry 17:511–516CrossRefGoogle Scholar
  19. De Hoog GS, Gerrits van den Ende AH (1998) Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41:183–189CrossRefGoogle Scholar
  20. de Medeiros AG, Savi DC, Mitra P, Shaaban KV, Jha AK, Thorson JS, Rohr J, Glienke C (2018) Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol 63:499–505CrossRefGoogle Scholar
  21. Dewdney MM, Schubert TS, Estes MR, Roberts PD, Peres NA (2016) Florida Citrus Pest Management Guide. eds. University of Florida, Institute of Food and Agricultural Services, GainesvilleGoogle Scholar
  22. dos Santos TT, de Souza LT, de Queiroz CB, de Araújo EF, Pereira OL, de Queiroz MV (2016) High genetic variability in endophytic fungi from the genus Diaporthe isolated from common bean (Phaseolus vulgaris L.) in Brazil. J Appl Microbiol 120:388–401CrossRefGoogle Scholar
  23. El-Beih A, Kato H, Ohta T, Tsukamoto S (2007) (3R,4aR,5S,6R)-6-Hydroxy-5-methylramulosin: a new ramulosin derivative from a marine-derived sterile mycelium. Chem Pharm Bull 55:953–954CrossRefGoogle Scholar
  24. Elias LM, Fortkampa D, Sartori SB, Ferreira MC, Gomes LH, Azevedo JL, Montayac QV, Rodrigues A, Ferreira AG, Lira SP (2018) The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose. Braz J Microbiol 49:840–847CrossRefGoogle Scholar
  25. Evidente M, Cimmino A, Zonno MC, Mais M, Berestetskyi A, Santoro E, Superchi S, Vurro M, Evidente A (2015) Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochem 117:482–488CrossRefGoogle Scholar
  26. Félix C, Salvatore MM, DellaGreca M, Meneses R, Duarte AS, Salvatore F, Naviglio D, Gallo M, Jorrín-Novo JV, Alves A, Andolfi A, Esteves AC (2018) Production of toxic metabolites by two strains of Lasiodiplodia theobromae, isolated from a coconut tree and a human patient. Mycol 31:1–12Google Scholar
  27. Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92CrossRefGoogle Scholar
  28. Ferreira MC, Vieira MLA, Zani CL, Alves TMA, Sales Junior PA, Murta SMF, Romanha AJ, Gil LHVG, Carvalho AGO, Zilli JE, Vital MJS, Rosa CA, Rosa LH (2015) Molecular phylogeny diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem Syst Ecol 59:36–44CrossRefGoogle Scholar
  29. Ferreira MC, Cantrell CL, Wedge DE, Gonçalves VN, Jacob MR, Khan S, Rosa CA, Rosa LH (2017) Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantean from Brazil. Mem Inst Oswaldo Cruz 112:692–697CrossRefGoogle Scholar
  30. Glass NL, Donaldson G (1995) Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330Google Scholar
  31. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41CrossRefGoogle Scholar
  32. Grove JF (1972) New metabolic products of Aspergillus flavus. I. Asperentin, its methyl ethers, and 5′-hydroxyasperentin. J Chem Soc Perkin 119:2400–2406CrossRefGoogle Scholar
  33. Grove JF, Pople M (1979) Metabolic products of Fusarium larvarum fuckel. The fusarentins and the absolute configuration of monocerin. J Chem Soc Perkin Trans 1:2048–2051CrossRefGoogle Scholar
  34. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  35. Hokama Y, Savi DC, Assad B, Aluizio R, Gomes-Figueiredo J, Adamoski D, Possiede YM, Glienke C (2017) Endophytic fungi isolated from Vochysia divergens in the pantanal, Mato Grosso do Sul: diversity, phylogeny and biocontrol of Phyllosticta citricarpa. In: Hughes E (ed) Endophytic Fungi: diversity, characterization and biocontrol, 4th edn. Hauppauge, NY, Nova, pp 1–25Google Scholar
  36. Hussain H, Green IR (2017) A patent review of two fruitful decades (1997-2016) of Isocoumarin research. Expert Opin Ther Pat 27:1267–1275CrossRefGoogle Scholar
  37. Hussain H, Krohn K, Draeger S, Meier K, Schulz B (2009) Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Rec Nat Prod 3:114–117Google Scholar
  38. Jacyno JM, Harwood JS, Cutler HG, Lee MK (1993) Isocladosporin, a biologically active isomer of cladosporin from Cladosporium cladosporioides. J Nat Prod 56:1397–1401CrossRefGoogle Scholar
  39. Kimura Y, Shimomura N, Tanigawa F, Fujioka S, Shimada A (2012) Plant growth activities of aspyran, asperentin, and its analogues produced by the fungus Aspergillus sp. Z Naturforsch C 67:587–593CrossRefGoogle Scholar
  40. Klein MN, Silva AC, Lopes MR, Kupper KC (2013) Application of microorganisms, alone or in combination, to control postbloom fruit drop in citrus. Trop Plant Pathol 38:505–512CrossRefGoogle Scholar
  41. Klein MN, da Silva AC, Kupper KC (2016) Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus. World J Microbiol Biotechnol 32:205CrossRefGoogle Scholar
  42. Kokubun T, Veitch NC, Bridge PD, Simmonds MS (2003) Dihydroisocoumarins and a tetralone from Cytospora eucalypticola. Phytochemistry 62:779–782CrossRefGoogle Scholar
  43. Kumar S, Stecher G, Tamura K (2015) MEGA7: molecular evolutionary genetics analysis version 7 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  44. Laatsch H (2017) AntiBase: the natural compound identifier. Wiley-VCH, WeinheimGoogle Scholar
  45. Lima WG, Spósito MB, Amorim L, Gonçalves FP, Filho PAM (2011) Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. Eur J Plant Pathol 131:157–165CrossRefGoogle Scholar
  46. Liu HX, Tan HB, Liu Y, Chen YC, Li SN, Sun ZH, Qiu SX, Zhang WM (2017) Three new highly-oxygenated metabolites from the endophytic fungus Cytospora rhizophorae A761. Fitoterapia 117:1–5CrossRefGoogle Scholar
  47. Luo X, Lin X, Tao H, Wang J, Li J, Yang B, Zhou X, Liu Y (2018) Isochromophilones A–F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J Nat Prod 81:934–941CrossRefGoogle Scholar
  48. Masi M, Nocera P, Reveglia P, Cimmino A, Evidente A (2018) Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules 23:834CrossRefGoogle Scholar
  49. Miles AK, Willingham ABSL, Cooke AW (2004) Field evaluation of strobilurins and a plant activator for the control of citrus black spot. Austral Plant Pathol 33:371–378CrossRefGoogle Scholar
  50. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365CrossRefGoogle Scholar
  51. Noriler SA, Savi DC, Aluizio R, Palácio-Cortes AM, Possiede YM, Glienke C (2018) Bioprospecting and structure of fungal endophyte communities found in the Brazilian, Pantanal, and Cerrado. Front Microbiol 9:1526CrossRefGoogle Scholar
  52. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNAITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefGoogle Scholar
  53. Okuno T, Oikawa S, Goto T, Saw Ai K, Shirahama H, Matsumoto T (1986) Structures and phytotoxicity of metabolites from Valsa ceratosperma. Agric Biol Chem 50:997–1001Google Scholar
  54. Raeder J, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Let Appl Microbiol 1:17–20CrossRefGoogle Scholar
  55. Reese PB, Rawlings BJ, Ramer SE, Vederas JC (1988) Comparison of stereochemistry of fatty acid and cladosporin biosynthesis in Cladosporium cladosporioides using deuterium-decoupled proton, carbon-13 NMR shift correlation. J Am Chem Soc 110:316–318CrossRefGoogle Scholar
  56. Reis BMS, Silva A, Alvarez MR, Oliveira TB, Rodrigues A (2015) Fungal communities in gardens of the leafcutter and Atta cephalotes in forest and cabruca agrosystems of southern Bahia state (Brazil). Fungal Biol 119:1170–1178CrossRefGoogle Scholar
  57. Santos PJ, Savi DC, Gomes RR, Goulin EH, da Costa Senkiv C, Tanaka FA, Almeida AM, Galli-Terasawa L, Kava V, Glienke C (2016) Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiol Res 186:153–160CrossRefGoogle Scholar
  58. Sappapan R, Sommit D, Ngamrojanavanich N, Pengpreecha S, Wiyakrutta S, Sriubolmas N, Pudhom K (2008) 11-Hydroxymonocerin from the plant endophytic fungus Exserohilum rostratum. J Nat Prod 71:1657–1659CrossRefGoogle Scholar
  59. Sassa T, Kenmoku H, Sato M, Murayama T, Kato N (2003) (+)-Menthol and its hydroxy derivatives, novel fungal monoterpenols from the fusicoccin-producing fungi, Phomopsis amygdali F6a and Niigata 2. Biosci Biotechnol Biochem 67:475–479CrossRefGoogle Scholar
  60. Savi DC, Haminiuk CWI, Sora GTS, Adamoski DM, Kensiki J, Winnischofer SMB, Galli-Terasawa LV, Kava V, Glienke C (2015) Antitumor, antioxidant and antibacterial activities of secondary metabolites extracted by endophytic actinomycetes isolated from Vochysia divergens. Int J Pharm Chem Biol Sci 5:347–356Google Scholar
  61. Savi DC, Shaaban KA, Gos F, Ponomareva LV, Thorson JS, Glienke C, Rohr J (2018) Phaeophleospora vochysiae Savi & Glienke sp. nov. isolated from Vochysia divergens found in the Pantanal, Brazil, produces bioactive secondary metabolites. Sci Rep 8:3122CrossRefGoogle Scholar
  62. Scott PM, Van Walbeek W, MacLean WM (1971) Cladosporin, a new antifungal metabolite from Cladosporium cladosporioides. J Antibiot 24:747–755CrossRefGoogle Scholar
  63. Scott FE, Simpson TJ, Trimble LA, Vederas JC (1984) Biosynthesis of monocerin. Incorporation of 2H-, 13C-, and 18O-labelled acetates by Drechslera ravenelii. J Chem Soc Chem Commun 756-758Google Scholar
  64. Shaaban KA, Singh S, Elshahawi SI, Wang X, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS (2014) Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J Antibiot 67:223–230CrossRefGoogle Scholar
  65. Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS (2015) Cytotoxic Indolocarbazoles from Actinomadura melliaura ATCC 39691. J Nat Prod 78:1723–1729CrossRefGoogle Scholar
  66. Shaaban KA, Saunders MA, Zhang Y, Tran T, Elshahawi SI, Ponomareva LV, Wang X, Zhang J, Copley GC, Sunkara M, Kharel MK, Morris AJ, Hower JC, Tremblay MS, Prendergast MA, Thorson JS (2017) Spoxazomicin D and Oxachelin C, potent neuroprotective Carboxamides from an Appalachian coal fire-associated isolate Streptomyces sp. RM-14-6. J Nat Prod 80:2–11CrossRefGoogle Scholar
  67. Shigemoto R, Matsumoto T, Masuo S, Takaya N (2018) 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production. J Gen Appl Microbiol 64:240–247CrossRefGoogle Scholar
  68. Silva AO, Savi DC, Gomes FB, Gos FMWR, Silva GJ Jr, Glienke C (2017) Identification of Colletotrichum species associated with postbloom fruit drop in Brazil through GAPDH sequencing analysis and multiplex PCR. Eur J Plant Pathol 147:731–748CrossRefGoogle Scholar
  69. Specian V, Sarragiotto MH, Pamphile JA, Edmar C (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182CrossRefGoogle Scholar
  70. Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P (2018) Antibacterial and antioxidant metabolites of Diaporthe spp. isolated form flowers of Melodorum fruticosum. Curr Microbiol 75:476–483CrossRefGoogle Scholar
  71. Tang Q, Guo K, Li XY, Zheng XY, Kong XJ, Zheng ZH, Xu QY, Deng X (2014) Three new asperentin derivatives from the algicolous fungus Aspergillus sp. F00785. Mar Drugs 12:5993–6002CrossRefGoogle Scholar
  72. Tonial F, Maia BHLNS, Sobottka AM, Savi DC, Vicente VA, Gomes RR, Glienke C (2017) Biological activity of Diaporthe terebinthifolii extracts against Phyllosticta citricarpa. FEMS Microbiol Lett 364.
  73. U.S. EPA (2012) U.S. Environmental Protection Agency—risk assessment for safety of orange juice containing fungicide carbendazim,
  74. Wang X, Wedge DE, Cutler SJ (2016) Chemical and biological study of cladosporin, an antimicrobial inhibitor: a review. Nat Prod Commun 11:1595–1600Google Scholar
  75. Wang X, Zhang Y, Ponomareva LV, Qiu Q, Woodcock R, Elshahawi SI, Chen X, Zhou Z, Hatcher BE, Hower JC, Zhan C-G, Parkin S, Kharel MK, Voss SR, Shaaban KA, Thorson JS (2017) Mccrearamycins A-D, geldanamycin-derived cyclopentenone macrolactams from an eastern Kentucky abandoned coal mine microbe. Angew Chem Int Ed 56:2994–2998CrossRefGoogle Scholar
  76. White TJ, Bruns T, Lee J, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR protocols: a guide to methods and applications, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (San Diego, CA: Academic Press), 315-322Google Scholar
  77. Wiese J, Aldemir H, Schmaljohann R, Gulder TAM, Imhoff JF (2017) Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar Drugs 15:191CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  1. 1.Department of GeneticsUniversidade Federal do ParanaCuritibaBrazil
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckLexingtonUSA
  3. 3.Department of PathologyUniversidade Federal do ParanaCuritibaBrazil
  4. 4.Center for Pharmaceutical Research and Innovation, College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations