Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov

  • Eva Kolářová
  • Hana Medová
  • Kasia Piwosz
  • Michal KoblížekEmail author
Original Article


Aerobic anoxygenic phototrophic (AAP) bacteria are a common component of freshwater microbial communities. They harvest light energy using bacteriochlorophyll a-containing reaction centers to supplement their predominantly heterotrophic metabolism. We used epifluorescence microscopy, HPLC, and infrared fluorometry to examine the dynamics of AAP bacteria in the mesotrophic lake Vlkov during the seasonal cycle. The mortality of AAP bacteria was estimated from diel changes of bacteriochlorophyll a fluorescence. The AAP abundance correlated with water temperature and DOC concentration. Its maximum was registered during late summer, when AAP bacteria made up 20% of total bacteria. The novel element of this study is the seasonal measurements of AAP mortality rates. The rates ranged between 1.15 and 4.56 per day with the maxima registered in early summer coinciding with the peak of primary production, which documents that AAP bacteria are a highly active component of freshwater microbial loop.



The authors thank J. Dean BSc. for his help during the sampling and for the language corrections, and Eva Žišková for her help with pigment analyses.

Funding information

This research was supported by the MŠMT project Algatech plus (LO1416).


  1. Anderson MJ, Legendre P (1999) An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul 62:271–303CrossRefGoogle Scholar
  2. Caliz J, Casamayor EO (2014) Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (Central Pyrenees). Environ Microbiol Rep 6:145–151CrossRefGoogle Scholar
  3. Cepáková Z, Hrouzek P, Žišková E, Nuyanzina-Boldareva E, Šorf M, Kozlíková-Zapomělová E, Salka I, Grossart HP, Koblížek M (2016) High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ Microbiol 18:5063–5071CrossRefGoogle Scholar
  4. Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M (2013) Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol 79:6439–6446CrossRefGoogle Scholar
  5. Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Garcia-Chavez MC, del Giorgio PA (2015) Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One 10:e0124035CrossRefGoogle Scholar
  6. Ferrera I, Gasol JM, Sebastián M, Hojerová E, Koblížek M (2011) Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton in coastal Mediterranean Waters. Appl Environ Microbiol 77:7451–7458CrossRefGoogle Scholar
  7. Ferrera I, Sanchez O, Kolářová E, Koblížek M, Gasol JM (2017a) Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J 11:2391–2393CrossRefGoogle Scholar
  8. Ferrera I, Sarmento H, Priscu JC, Chiuchiolo A, González JM, Grossart H-P (2017b) Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front Microbiol 8:175. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Garcia-Chaves MC, Cottrell MT, Kirchman DL, Derry AM, Bogard MJ, del Giorgio PA (2015) Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquat Microb Ecol 76:71–83CrossRefGoogle Scholar
  10. Garcia-Chaves MC, Cottrell MT, Kirchman DL, Ruiz-González C, del Giorgio PA (2016) Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME J 10:1579–1588CrossRefGoogle Scholar
  11. Hauruseu D, Koblížek M (2012) The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419CrossRefGoogle Scholar
  12. Huang Y, Zeng Y, Lu H, Feng H, Zeng Y, Koblížek M (2016) Novel acsF gene primers revealed a diverse phototrophic bacterial population, including Gemmatimonadetes, in Lake Taihu (China). Appl Environ Microbiol 82:5587–5594CrossRefGoogle Scholar
  13. Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870CrossRefGoogle Scholar
  14. Koblížek M, Mlčoušková J, Kolber Z, Kopecký J (2010) On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192:41–49CrossRefGoogle Scholar
  15. Koblížek M, Ston-Egiert J, Sagan S, Kolber ZS (2005) Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microb Ecol 51:353–361CrossRefGoogle Scholar
  16. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24CrossRefGoogle Scholar
  17. Lew S, Koblížek M, Lew M, Medová H, Glińska-Lewczuk K, Owsianny PM (2015) Seasonal changes of microbial communities in two shallow peat-bog lakes. Folia Microbiol 60:165–175CrossRefGoogle Scholar
  18. Liu R, Zhang Y, Jiao N (2010) Diel changes in frequency of dividing cells and abundance of aerobic anoxygenic phototrophic bacteria in coral reef system of the South China Sea. Aquat Microb Ecol 58:303–310CrossRefGoogle Scholar
  19. Mašín M, Nedoma J, Pechar L, Koblížek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996CrossRefGoogle Scholar
  20. Mašín M, Čuperová Z, Hojerová E, Salka I, Grossart H-P, Koblížek M (2012) Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of Northern Europe. Aquat Microb Ecol 66:77–86CrossRefGoogle Scholar
  21. Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M (2018) Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environ Microbiol 20:724–733CrossRefGoogle Scholar
  22. Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S (2013) Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol 84:316–331CrossRefGoogle Scholar
  23. Salka I, Čuperová Z, Mašín M, Koblížek M, Grossart H-P (2011) Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol 13:2865–2875CrossRefGoogle Scholar
  24. Sato-Takabe Y, Hamasaki K, Suzuki S (2018) High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater. MicrobiologyOpen 8:e00710. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shi L, Cai Y, Chen Z, Zhou Y, Li P, Kong F (2010) Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom-forming lakes in China. Ann Limnol Int J Limnol 46:233–239CrossRefGoogle Scholar
  26. Šimek K, Horňák K, Jezbera J, Mašín M, Nedoma J, Gasol JM, Schauer M (2005) Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71:2381–2390CrossRefGoogle Scholar
  27. Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrábová et al (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624CrossRefGoogle Scholar
  28. Waidner LA, Kirchman DL (2005) Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7:1896–1908CrossRefGoogle Scholar
  29. Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beaty JT (eds) The purple phototrophic bacteria, advances in photosynthesis and respiration, vol 28. Springer Verlag, Dordrecht, pp 31–55CrossRefGoogle Scholar
  30. Yurkov VV, van Gemerden H (1993) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  • Eva Kolářová
    • 1
  • Hana Medová
    • 1
  • Kasia Piwosz
    • 1
  • Michal Koblížek
    • 1
    Email author
  1. 1.Center AlgatechInstitute of Microbiology CASTřeboňCzech Republic

Personalised recommendations