Folia Microbiologica

, Volume 64, Issue 2, pp 245–255 | Cite as

Identification of cell-associated and secreted serine-type peptidases in multidrug-resistant emergent pathogens belonging to the Candida haemulonii complex

  • Xênia M. Souto
  • Lívia S. Ramos
  • Marta H. Branquinha
  • André L. S. SantosEmail author
Original Article


The Candida haemulonii complex (Candida haemulonii, Candida haemulonii var. vulnera, and Candida duobushaemulonii) comprises emerging opportunistic human fungal pathogens with recognized multidrug-resistance profiles. Little is known about the virulence markers produced by this fungal complex. However, it is recognized that Candida spp. express a large array of peptidases, which play multiple roles in different aspects of fungal-host interactions. In the present study, we have identified proteolytic enzymes in clinical isolates of the C. haemulonii complex using zymographic assays. Peptidases able to hydrolyze gelatin, casein, albumin, hemoglobin, and immunoglobulin G were detected in cell-free supernatants and cellular extracts taken from the three species forming the C. haemulonii complex. Overall, peptidases were preferentially evidenced at physiological pH and temperatures of 37–42 °C, with molar masses between 35 and 85 kDa. Peptidase profiles of C. haemulonii and C. haemulonii var. vulnera isolates were quite similar, contrasting to the peptidases produced by C. duobushaemulonii. Almost all peptidases were inhibited by phenylmethanesulfonyl fluoride (PMSF), thus classifying them as serine-type peptidases. Additionally, proteolytic cleavage of soluble azoalbumin was blocked by PMSF (65–95% inhibition depending on the fungal isolate). These unprecedented results have demonstrated the capability of the C. haemulonii complex to produce serine-type peptidases with an ability to cleave a broad spectrum of proteins, including key host components.



The authors would like to thank Dr. Malachy McCann (Chemistry Department, National University of Ireland Maynooth, Co. Kildare, Ireland) for the valuable critical English review and Dr. Diogo de Azevedo Jurelevicius (Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil) for the help with the dendrogram analysis.

Funding information

This study was supported by grants from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA (2010) Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun 78:3585–3594CrossRefGoogle Scholar
  2. Bochenska O, Rapala-Kozik M, Wolak N, Bras G, Kozik A, Dubin A, Aoki W, Ueda M, Mak P (2013) Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 48:49–58CrossRefGoogle Scholar
  3. Caggiano G, Coretti C, Bartolomeo N, Lovero G, de Giglio O, Montagna MT (2015) Candida bloodstream infections in Italy: changing epidemiology during 16 years of surveillance. Biomed Res Int 2015:256580CrossRefGoogle Scholar
  4. Casadevall A (1995) Antibody immunity and invasive fungal infections. Infect Immun 63:4211–4218Google Scholar
  5. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gomez-Lopez A, Boekhout T (2012) Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50:3641–3651CrossRefGoogle Scholar
  6. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180Google Scholar
  7. Chen SC, Marriott D, Playford EG, Nguyen Q, Ellis D, Meyer W, Sorrell TC, Slavin M (2009) Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management. Clin Microbiol Infect 15:662–669CrossRefGoogle Scholar
  8. Crouzet J, Sotto A, Picard E, Lachaud L, Bourgeois N (2011) A case of Candida haemulonii osteitis: clinical features, biochemical characteristics, and antifungal resistance profile. Clin Microbiol Infect 17:1068–1070CrossRefGoogle Scholar
  9. Gargeya IB, Pruitt WR, Meyer SA, Ahearn DG (1991) Candida haemulonii from clinical specimens in the USA. J Med Vet Mycol 29:335–338CrossRefGoogle Scholar
  10. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  11. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202CrossRefGoogle Scholar
  12. Ito M, Yamada T, Makimura K, Ishihara Y, Satoh K, Kikuchi K, Nomura Y, Ishii Y, Abe S (2010) Intracellular serine protease from Candida glabrata species detected and analyzed by zymography. Med Mycol 1:29–35Google Scholar
  13. Jousson O, Lechenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M (2004) Secreted subtilisin gene family in Trichophyton rubrum. Gene 339:79–88CrossRefGoogle Scholar
  14. Khan ZU, Al-Sweih NA, Ahmad S, Al-Kazemi N, Khan S, Joseph L, Chandy R (2007) Outbreak of fungemia among neonates caused by Candida haemulonii resistant to amphotericin B, itraconazole, and fluconazole. J Clin Microbiol 45:2025–2027CrossRefGoogle Scholar
  15. Kim MN, Shin JH, Sung H, Lee K, Kim EC, Ryoo N, Lee JS, Jung SI, Park KH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW (2009) Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis 48:e57–e61CrossRefGoogle Scholar
  16. Lavarde V, Daniel F, Saez H, Arnold M, Faguer B (1984) Peritonite mycosique a Torulopsis haemulonii. Bull Soc Fr Mycol Med 13:173–176Google Scholar
  17. Lehmann PF, Wu LC, Pruitt WR, Meyer SA, Ahearn DG (1993) Unrelatedness of groups of yeasts within the Candida haemulonii complex. J Clin Microbiol 31:1683–1687Google Scholar
  18. Li W, Hu YA, Li FQ, Shi LN, Shao HF, Huang M, Wang Y, Han DD, Liao H, Ma CF, Zhang GY (2015) Distribution of yeast isolates from invasive infections and their in vitro susceptibility to antifungal agents: evidence from 299 cases in a 3-year (2010 to 2012) surveillance study. Mycopathologia 179:397–405CrossRefGoogle Scholar
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  20. Mahon CS, O’Donoghue AJ, Goetz DH, Murray PG, Craik CS, Tuohy MG (2009) Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Microbiology 155:3673–3682CrossRefGoogle Scholar
  21. Melo AC, Dornelas-Ribeiro M, De Souza EP, Macrae A, Fracalanzza SE, Vermelho AB (2007) Peptidase profiles from non-albicans Candida spp. isolated from the blood of a patient with chronic myeloid leukemia and another with sickle cell disease. FEMS Yeast Res 7:1004–1012CrossRefGoogle Scholar
  22. Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419CrossRefGoogle Scholar
  23. Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM (1992) A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175:1643–1651CrossRefGoogle Scholar
  24. Noble SM (2013) Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol 16:708–715CrossRefGoogle Scholar
  25. Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL (2010) Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 51:561–570CrossRefGoogle Scholar
  26. Papon N, Courdavault V, Clastre M, Bennett RJ (2013) Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9:e1003550CrossRefGoogle Scholar
  27. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, Rodloff A, Fu W, Ling TA (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48:1366–1377CrossRefGoogle Scholar
  28. Plantner JJ (1991) A microassay for proteolytic activity. Anal Biochem 195:129–131CrossRefGoogle Scholar
  29. Portela MB, Kneipp LF, Ribeiro de Souza IP, Holandino C, Alviano CS, Meyer-Fernandes JR, de Araujo Soares RM (2010) Ectophosphatase activity in Candida albicans influences fungal adhesion: study between HIV-positive and HIV-negative isolates. Oral Dis 16:431–437CrossRefGoogle Scholar
  30. Ramachandra S, Linde J, Brock M, Guthke R, Hube B, Brunke S (2014) Regulatory networks controlling nitrogen sensing and uptake in Candida albicans. PLoS One 9:e92734CrossRefGoogle Scholar
  31. Ramos LS, Branquinha MH, Santos ALS (2017a) Different classes of hydrolytic enzymes produced by multidrug-resistant yeasts comprising the Candida haemulonii complex. Med Mycol 55:228–232CrossRefGoogle Scholar
  32. Ramos LS, Figueiredo-Carvalho MH, Barbedo LS, Ziccardi M, Chaves AL, Zancope-Oliveira RM, Pinto MR, Sgarbi DB, Dornelas-Ribeiro M, Branquinha MH, Santos ALS (2015) Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil. J Antimicrob Chemother 70:111–115CrossRefGoogle Scholar
  33. Ramos LS, Oliveira SSC, Souto XM, Branquinha MH, Santos ALS (2017b) Planktonic growth and biofilm formation profiles in Candida haemulonii species complex. Med Mycol 55:785–789CrossRefGoogle Scholar
  34. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635Google Scholar
  35. Rodero L, Cuenca-Estrella M, Cordoba S, Cahn P, Davel G, Kaufman S, Guelfand L, Rodriguez-Tudela JL (2002) Transient fungemia caused by an amphotericin B-resistant isolate of Candida haemulonii. J Clin Microbiol 40:2266–2269CrossRefGoogle Scholar
  36. Rodier MH, Moudni BE, Ghazali M, Lacroix C, Jacquemin JL (1994) Electrophoretic detection of cytoplasmic serine proteinases (gelatinases) in Candida albicans. Exp Mycol 18:267–270CrossRefGoogle Scholar
  37. Ruan SY, Kuo YW, Huang CT, Hsiue HC, Hsueh PR (2010) Infections due to Candida haemulonii: species identification, antifungal susceptibility and outcomes. Int J Antimicrob Agents 35:85–88CrossRefGoogle Scholar
  38. Santos ALS (2011) Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2:48–58CrossRefGoogle Scholar
  39. Santos ALS, Carvalho IM, Silva BA, Portela MB, Alviano CS, Soares RMA (2006) Secretion of serine peptidase by a clinical strain of Candida albicans: influence of growth conditions and cleavage of human serum proteins and extracellular matrix components. FEMS Immunol Med Microbiol 46:209–220CrossRefGoogle Scholar
  40. Santos ALS, Soares RMA (2005) Candida guilliermondii isolated from HIV-infected human secretes a 50 kDa serine proteinase that cleaves a broad spectrum of proteinaceous substrates. FEMS Immunol Med Microbiol 43:13–20CrossRefGoogle Scholar
  41. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24CrossRefGoogle Scholar
  42. Segal B (2006) Molecular pathogenesis of fungal infections. In: Runge MS, Patterson C (eds) Principles of molecular medicine. Humana Press, pp 920–933Google Scholar
  43. Sehnaz A, Sevtap AA, Dolunay G, Sibel A, Omrum U, Murat A (2015) Epidemiology of candidaemia in a tertiary care university hospital: 10-year experience with 381 candidaemia episodes between 2001 and 2010. Mycoses 58:498–505CrossRefGoogle Scholar
  44. Silva NC, Nery JM, Dias AL (2014) Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 57:1–11CrossRefGoogle Scholar
  45. Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RP, Silveira D, Fonseca YM, Ferreira Filho EX, Pessoa Junior A, Magalhaes PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRefGoogle Scholar
  46. van U, Kolipinski MC (1962) Torulopsis haemulonii nov. sp., a yeast from the Atlantic Ocean. Antonie Van Leeuwenhoek 28:78–80CrossRefGoogle Scholar
  47. Vermelho AB, Mazotto AM, de Melo AC, Vieira FH, Duarte TR, Macrae A, Nishikawa MM, da Silva Bon EP (2010) Identification of a Candida parapsilosis strain producing extracellular serine peptidase with keratinolytic activity. Mycopathologia 169:57–65CrossRefGoogle Scholar
  48. Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em Bioquímica, Instituto de Química (IQ)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations