Advertisement

Folia Microbiologica

, Volume 64, Issue 2, pp 215–222 | Cite as

Influence of Streptococcus mitis and Streptococcus sanguinis on virulence of Candida albicans: in vitro and in vivo studies

  • Ana Luiza do Rosário PalmaEmail author
  • Nádia Domingues
  • Patrícia Pimentel de Barros
  • Graziella Nuernberg Back Brito
  • Antônio Olavo Cardoso Jorge
Original Article

Abstract

The aim was to evaluate in vitro possible interactions, gene expression, and biofilm formation in species of Candida albicans, Streptococcus mitis, and Streptococcus sanguinis and their in vivo pathogenicity. The in vitro analysis evaluated the effects of S. mitis and S. sanguinis on C. albicans’s biofilm formation by CFU count, filamentation capacity, and adhesion (ALS1, ALS3, HWP1) and transcriptional regulatory gene (BCR1, CPH1, EFG1) expression. In vivo studies evaluated the pathogenicity of the interaction of the microorganisms on Galleria mellonella, with analyses of the CFU per milliliter count and filamentation. In vitro results indicated that there was an observed decrease in CFU (79.4–71.5%) in multi-species biofilms. The interaction with S. mitis inhibited filamentation, which seems to increase its virulence factor with over-expression of genes ALS1, ALS3, and HWP1 as well the interaction with S. sanguinis as ALS3 and HWP1. S. mitis upregulated BRC1, CPH1, and EFG1. The histological images of in vivo study indicate an increase in the filamentation of C. albicans when in interaction with the other species. It was concluded that S. mitis interaction suggests increased virulence factors of C. albicans, with periods of lower virulence and proto-cooperation in the interaction with S. sanguinis.

Notes

Funding information

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Arvanitis M, Glavis-Bloom J, Mylonakis E (2013) Invertebrate models of fungal infection. Biochim Biophys Acta 1832(9):1378–1383.  https://doi.org/10.1016/j.bbadis.2013.03.008 CrossRefGoogle Scholar
  2. Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679CrossRefGoogle Scholar
  3. Bamford CV, d'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704CrossRefGoogle Scholar
  4. Bandara HMHN, Cheung BPK, Watt RM, Jin LJ, Samaranayake LP (2013) Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development. Mol Oral Microbiol 28:54–69.  https://doi.org/10.1111/omi.12006 CrossRefGoogle Scholar
  5. Barbosa JO, Rossoni RD, Vilela SF, de Alvarenga JA, Velloso Mdos S, Prata MC (2016) Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans. PLoS One 11(3):e0150457.  https://doi.org/10.1371/journal.pone.0150457 CrossRefGoogle Scholar
  6. Barros PP, Ribeiro FC, Rossoni RD, Junqueira JC, Jorge AOC (2016) Influence of Candida krusei and Candida glabrata on Candida albicans biofilms in vitro gene expression. Arch Oral Biol 64:92–101.  https://doi.org/10.1016/j.archoralbio.2016.01.005 CrossRefGoogle Scholar
  7. Bertolini MM, Xu H, Sobue T, Nobile CJ, Cury A, Dongari-Bagtzoglou A (2015) Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Mol Oral Microbiol 30(4):307–322CrossRefGoogle Scholar
  8. Cavalcanti YW, Morse DJ, da Silva WJ, Del-Bel-Cury AA, Wei X, Wilson M (2015) Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria. Biofouling 31:27–38CrossRefGoogle Scholar
  9. de Barros PP, Rossoni RD, Freire F, Ribeiro FC, Lopes LADC, Junqueira JC, Jorge AOC (2018) Candida tropicalis affects the virulence profile of Candida albicans: an in vitro an. Pathog Dis 76(2)Google Scholar
  10. Diaz PI, Dupuy AK, Abusleme L (2012a) Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol Oral Microbiol 27:182–201CrossRefGoogle Scholar
  11. Diaz PI, Xie Z, Sobue T, Thompson A, Biyikoglu B, Ricker A (2012b) Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 80(2):620–632.  https://doi.org/10.1128/IAI.05896-11 CrossRefGoogle Scholar
  12. Domingues N (2014) Multispecies biofilms of Candida albicans associated with Streptococcus mitis and Streptococcus sanguinis: study in vitro and in vivo. Dissertation, São Paulo State University (Unesp)Google Scholar
  13. Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A (2011) Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 6(1):e16218CrossRefGoogle Scholar
  14. Fuchs BB, Mylonakis E (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9(4):346–351.  https://doi.org/10.1016/j.mib.2006.06.004 CrossRefGoogle Scholar
  15. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713CrossRefGoogle Scholar
  16. Hawser SP, Baillie GS, Douglas LJ (1998) Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253­256–253­256.  https://doi.org/10.1099/00222615-47-3-253 CrossRefGoogle Scholar
  17. Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schock U (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8(12):e1003118.  https://doi.org/10.1371/journal.pgen.1003118 CrossRefGoogle Scholar
  18. Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13:589–595CrossRefGoogle Scholar
  19. Liu H, Kohler J, Fink GR (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266(5191):1723–1726CrossRefGoogle Scholar
  20. Livak KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefGoogle Scholar
  21. Morales DKN, Jacobs S, Rajamani M, Krishnamurthy JC, Cubillos-Ruiz DA (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilmes. Mol Microbiol 78:1379–1392CrossRefGoogle Scholar
  22. Mylonakis E, Aballay A (2005) Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun 73(7):3833–3841.  https://doi.org/10.1128/IAI.73.7.3833-3841.2005 CrossRefGoogle Scholar
  23. Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25.  https://doi.org/10.1186/1471-2199-7-25 CrossRefGoogle Scholar
  24. Nailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H (2010) Real­time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model­ dependent and ­independent gene expression. BMC Microbiol 10:114.  https://doi.org/10.1186/1471-2180-10-114 CrossRefGoogle Scholar
  25. O’Sullivan JM, Jenkinson HF, Cannon RD (2000) Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 146(Pt 1):41–48.  https://doi.org/10.1099/00221287-146-1-41 CrossRefGoogle Scholar
  26. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349CrossRefGoogle Scholar
  27. Ramsey MM, Rumbaugh KP, Whiteley M (2011) Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog 7:e1002012CrossRefGoogle Scholar
  28. Ribeiro FC, de Barros PP, Rossoni RD, Junqueira JC, Jorge AO (2017) Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. Appl Microbiol 122(1):201–211.  https://doi.org/10.1111/jam.13324 CrossRefGoogle Scholar
  29. Ricker A, Vickerman M, Dongari-Bagtzoglou A (2014) Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. J Oral Microbiol 6.  https://doi.org/10.3402/jom.v6.23419
  30. Rossoni RD, Barbosa JO, Vilela SFG, Santos JD, Barros PP, Prata MCA (2015) Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PLoS One 10:e0131700CrossRefGoogle Scholar
  31. Rossoni RD, Barros PP, Freire F, Santos JDD, Jorge AOC, Junqueira JC (2017) Study of Microbial Interaction Formed by "Candida krusei" and "Candida glabrata": "In Vitro" and "In Vivo" Studies. Braz Dent J 28(6):669–674CrossRefGoogle Scholar
  32. Rossoni RD, Velloso MDS, de Barros PP, de Alvarenga JA, Santos JDD, Santos Prado ACCD, Ribeiro FC, Anbinder AL, Junqueira JC (2018) Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb Pathog 123:361–367CrossRefGoogle Scholar
  33. Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299(1):1–8CrossRefGoogle Scholar
  34. Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans H. Science 283(5407):1535–1538CrossRefGoogle Scholar
  35. Thein ZM, Samaranayake YH, Samaranayake LP (2006) Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol 51(8):672–680.  https://doi.org/10.1016/j.archoralbio.2006.02.005 CrossRefGoogle Scholar
  36. Vilela SF, Barbosa OJ, Rossoni RD, Santos JD, MC Silver Anbinder AL, Jorge AO, Junqueira JC (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6(1):29–39.  https://doi.org/10.4161/21505594.2014.981486 CrossRefGoogle Scholar
  37. Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 75:2126–2135CrossRefGoogle Scholar
  38. Whitmore SE, Lamont RJ (2011) The pathogenic persona of community-associated oral streptococci. Mol Microbiol 81(2):305–314CrossRefGoogle Scholar
  39. Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A (2013) Streptococcal co­infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 16(2):214–231.  https://doi.org/10.1111/cmi.12216 CrossRefGoogle Scholar
  40. Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A (2014) Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 16(2):214–231.  https://doi.org/10.1111/cmi.12216 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.Institute of Science and Technology, Department of Biosciences and Oral DiagnosisUNESP – Univ Estadual PaulistaSao Jose dos CamposBrazil

Personalised recommendations