Skip to main content

Advertisement

Log in

Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Biofilm is involved in a variety of infections, playing a critical role in the chronicity of infections. Enterobacter cloacae is a biofilm-forming and multi-drug-resistant (MDR) nosocomial pathogen leading to significant morbidity and mortality. This study aimed at isolation of a bacteriophage against MDR clinical strain of E. cloacae and its efficacy against bacterial planktonic cells and biofilm. A bacteriophage MJ2 was successfully isolated from wastewater and was characterized. The phage exhibited a wide range of thermal and pH stability and demonstrated considerable adsorption to host bacteria in the presence of CaCl2 or MgCl2. Transmission electron microscopy (TEM) showed MJ2 head as approximately 62 and 54 nm width and length, respectively. It had a short non-contractile tail and was characterized as a member of the family Podoviridae [order Caudovirales]. The phage MJ2 was found to possess 11 structural proteins (12–150 kDa) and a double-stranded DNA genome with an approximate size of 40 kb. The log-phase growth of E. cloacae both in biofilm and suspension was significantly reduced by the phage. The E. cloacae biofilm was formed under different conditions to evaluate the efficacy of MJ2 phage. Variable reduction pattern of E. cloacae biofilm was observed while treating it for 4 h with MJ2, i.e., biofilm under static conditions. The renewed media with intervals of 24, 72, and 120 h showed biomass decline of 2.8-, 3-, and 3.5-log, respectively. Whereas, the bacterial biofilm formed with dynamic conditions with refreshing media after 24, 72, and 120 h demonstrated decline in growth at 2.5-, 2.6-, and 3.3-log, respectively. It was, therefore, concluded that phage MJ2 possessed considerable inhibitory effects on MDR E. cloacae both in planktonic and biofilm forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackermann H-W (2009) Phage classification and characterization. In: Bacteriophages. Springer, pp 127–140

  • Ali T, ur Rahman S, Zhang L, Shahid M, Han D, Gao J, Zhang S, Ruegg PL, Saddique U, Han B (2017) Characteristics and genetic diversity of multi-drug resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget 8:90144–90163

    Article  PubMed  PubMed Central  Google Scholar 

  • Archibald L, Phillips L, Monnet D, McGowan JE, Tenover F, Gaynes R (1997) Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 24:211–215

    Article  CAS  PubMed  Google Scholar 

  • Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrow P, Lovell M, Berchieri A (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 5:294–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capra M, Quiberoni A, Reinheimer J (2006) Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains. J Appl Microbiol 100:334–342

    Article  CAS  PubMed  Google Scholar 

  • Casjens SR (2008) Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol 159:340–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156:506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Oliveira R, Azeredo J (2007) Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett Appl Microbiol 45:313–317

    Article  CAS  PubMed  Google Scholar 

  • Chhibber S, Kaur T, Kaur S (2013) Essential role of calcium in the infection process of broad-spectrum methicillin-resistant Staphylococcus aureus bacteriophage. J Basic Micrbiol 54:775–780

    Article  CAS  Google Scholar 

  • CLSI (2008) Implementation guide of POCT for health care providers; Approved Guideline. CLSI documents POCT02-A. Wayne PA. Clinical and laboratory Standards Institute. pp 1-37

  • Donlan RM (2005) New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res 437:12–19

    Article  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eighmy T, Maratea D, Bishop P (1983) Electron microscopic examination of wastewater biofilm formation and structural components. Appl Environ Microbiol 45:1921–1931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Baca V, Ballesteros F, Hervas J, Villalon P, Domínguez M, Benedí V, Albertí S (2001) Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three-year prospective study. J Hosp Infect 49:173–182

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11(1):160–167

    Article  CAS  PubMed  Google Scholar 

  • Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    Article  CAS  PubMed  Google Scholar 

  • Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbarth S, Sudre P, Dharan S, Cadenas M, Pittet D (1999) Outbreak of Enterobacter cloacae related to understaffing, overcrowding, and poor hygiene practices. Infect Control Hosp Epidemiol 20:598–603

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    Article  CAS  PubMed  Google Scholar 

  • Jalaluddin S, Devaster J-M, Scheen R, Gerard M, Butzler J-P (1998) Molecular epidemiological study of nosocomialEnterobacter aerogenes isolates in a Belgian hospital. J Clin Microbiol 36:1846–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Chaudhry WN, Hussain T, Das CR, Andleeb S (2015a) Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae. J Basic Microbiol 55:420–431

    Article  CAS  PubMed  Google Scholar 

  • Jamal M, Hussain T, Das CR, Andleeb S (2015b) Characterization of Siphoviridae phage Z and studying its efficacy against multi-drug resistant (MDR) Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol 64:454–462

    Article  CAS  PubMed  Google Scholar 

  • Jamalludeen N, Johnson RP, Friendship R, Kropinski AM, Lingohr EJ, Gyles CL (2007) Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet Microbiol 124:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kim S-M, Lee H-W, Choi Y-W, Kim S-H, Lee J-C, Lee Y-C, Seol S-Y, Cho D-T, Kim J (2012) Involvement of curli fimbriae in the biofilm formation of Enterobacter cloacae. J Microbiol 50:175–178

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu C-P, Wang N-Y, Lee C-M, Weng L-C, Tseng H-K, Liu C-W, Chiang C-S, Huang F-Y (2004) Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect 58:63–77

    Article  PubMed  Google Scholar 

  • Ma L, Chang F-Y, Fung C-P, Chen T-L, Lin J-C, Lu P-L, Huang L-Y, Chang J-C, Siu L (2005) Variety of TEM-, SHV-, and CTX-M-type β-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microb Drug Resist 11:31–39

    Article  CAS  PubMed  Google Scholar 

  • Marr KA, Sexton DJ, Conlon PJ, Corey GR, Schwab SJ, Kirkland KB (1997) Catheter-related bacteremia and outcome of attempted catheter salvage in patients undergoing hemodialysis. Ann Intern Med 127:275–280

    Article  CAS  PubMed  Google Scholar 

  • Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208:37–48

    Article  CAS  PubMed  Google Scholar 

  • Pearl S, Gabay C, Kishony R, Oppenheim A, Balaban NQ (2008) Nongenetic individuality in the host–phage interaction. PLoS Biol 6:957–959

    Article  CAS  Google Scholar 

  • Peters G, Locci R, Pulverer G (1982) Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis 146:479–482

    Article  CAS  PubMed  Google Scholar 

  • Piracha Z, Saeed U, Khurshid A, Chaudhary WN (2014) Isolation and partial characterization of virulent phage specific against Pseudomonas aeruginosa. Glob J Med Res 14:1–8

    Google Scholar 

  • Reese JF, Dimitracopoulos G, Bartell PF (1974) Factors influencing the adsorption of bacteriophage 2 to cells of Pseudomonas aeruginosa. J Virol 13:22–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards S, Turner R (1984) A comparative study of techniques for the examination of biofilms by scanning electron microscopy. Water Res 18:767–773

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Sieradzki K, Leski T, Dick J, Borio L, Tomasz A (2003) Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41:1687–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J (2004) Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138

    Article  PubMed  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:1–12

    Article  CAS  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tait K, Skillman L, Sutherland I (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311

    Article  Google Scholar 

  • Tenover FC (2001) Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 33:S108–S115

    Article  CAS  PubMed  Google Scholar 

  • Vinh DC, Embil JM (2005) Device-related infections: a review. J Long-Term Eff Med Implants 15:467–488

    Article  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zimmer M, Scherer S, Loessner MJ (2002) Genomic analysis of Clostridium perfringens bacteriophage φ3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 184:4359–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

K. Kelley from Interdisciplinary Center for Biotechnology Research, UF, USA, helped in TEM studies. Dr. Nighat, Railway General Hospital, Pakistan, provided bacterial strains to establish host range of phage MJ2. Furthermore, anonymous reviewers for their critical comments are highly appreciated.

Funding

The study was sponsored by Higher Education Commission, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsin Jamal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, M., Andleeb, S., Jalil, F. et al. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol 64, 101–111 (2019). https://doi.org/10.1007/s12223-018-0636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0636-x

Navigation