Flame Retardant Composite Foam Modified by Silylated Nanocellulose and Tris(2-chloropropyl) Phosphate
- 14 Downloads
Abstract
Improving flame retardancy is one of the most crucial issues to use polymeric materials for building construction. Most of the flame retardant materials containing halogen atoms delay fire spread, but produce harmful gases during combustion. Hence, we designed and fabricated a composite foam by using a green nanomaterial. Silylated and nanofibrillated cellulose (Si-NFC) was added to polyurethane foam (PUF) containing tris(2-chloropropyl) phosphate (TCPP) in order to reduce the emission of smoke during combustion. Thermal characteristics of the composite foams were investigated through thermogravimetric analysis, limiting oxygen index (LOI), and cone calorimeter tests. The LOI of the Si- NFC embedded composite was increased from 19.3 % to 24.6 %. In addition, the Si-NFC led to an improvement in the thermal stability of the composites by reducing the peak release of heat and smoke. Chemical structure of the residual char was analyzed by using energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy.
Keywords
Flame retardancy Silylation Nanofibrillated cellulose Composite foam Polyurethane foamPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by GRRC program of Gyeonggi Province (GRRC Dankook2016-B03). In addition, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049173) and by the Korea government (MSIT) (No. NRF-2018R1A5A1024127). The authors are grateful for the supports.
References
- 1.H.-B. Zhao, M. Chen, and H.-B. Chen, ACS Sustain. Chem. Eng., 5, 7012 (2017).CrossRefGoogle Scholar
- 2.S. Gutiérrez-González, J. Gadea, A. Rodr íguez, C. Junco, and V. Calderón, Constr. Build. Mater., 28, 653 (2012).CrossRefGoogle Scholar
- 3.R. Gomez-Rojo, L. Alameda, A. Rodriguez, V. Calderon, and S. Gutierrez-Gonzalez, Polymers (Basel), 11, 359 (2019).CrossRefGoogle Scholar
- 4.J. H. Park, K. S. Minn, H. R. Lee, S. H. Yang, C. B. Yu, S. Y. Pak, C. S. Oh, Y. S. Song, Y. J. Kang, and J. R. Youn, J. Sound Vib., 406, 224 (2017).CrossRefGoogle Scholar
- 5.X. Liu, J. Sun, S. Zhang, J. Guo, W. Tang, H. Li, and X. Gu, Polym. Degrad. Stab., 160, 168 (2019).CrossRefGoogle Scholar
- 6.Y.-J. Chen, C.-M. Shu, S.-P. Ho, H.-C. Kung, S.-W. Chien, H.-H. Ho, and W.-S. Hsu, Tunn. Undergr. Sp. Tech., 84, 142 (2019).CrossRefGoogle Scholar
- 7.A. Liu and L. A. Berglund, Eur. Polym. J., 49, 940 (2013).CrossRefGoogle Scholar
- 8.G. Shan, L. Jia, T. Zhao, C. Jin, R. Liu, and Y. Xiao, Fiber. Polym., 18, 2196 (2017).CrossRefGoogle Scholar
- 9.M. Tokumura, S. Ogo, K. Kume, K. Muramatsu, Q. Wang, Y. Miyake, T. Amagai, and M. Makino, Ecotoxicol. Environ. Saf., 169, 464 (2019).CrossRefGoogle Scholar
- 10.M. Ba, B. Liang, and C. Wang, Fiber. Polym., 18, 907 (2017).CrossRefGoogle Scholar
- 11.A. Šehić, J. Vasiljević, I. Jordanov, A. Demšar, J. Medved, I. Jerman, M. Čolović, F. Hewitt, T. R. Hull, and B. Simončič, Fiber. Polym., 19, 1194 (2018).CrossRefGoogle Scholar
- 12.W. Guo, Y. Hu, X. Wang, P. Zhang, L. Song, and W. Xing, Cellulose, 26, 1247 (2018).CrossRefGoogle Scholar
- 13.J. J. Cheng, W. J. Qu, and S. H. Sun, Polym. Compos., 40, E1006 (2018).CrossRefGoogle Scholar
- 14.D. Xu, K. Yu, and K. Qian, Polym. Degrad. Stab., 144, 207 (2017).CrossRefGoogle Scholar
- 15.J. Guo, G. Liu, Y. Guo, L. Tian, X. Bao, X. Zhang, B. Yang, and J. Cui, J. Polym. Res., 26, 19 (2019).CrossRefGoogle Scholar
- 16.N. T. Cervin, L. Andersson, J. B. Ng, P. Olin, L. Bergstrom, and L. Wagberg, Biomacromolecules, 14, 503 (2013).CrossRefGoogle Scholar
- 17.M. Obori, D. Suh, S. Yamasaki, T. Kodama, T. Saito, A. Isogai, and J. Shiomi, Phys. Rev. Appl., 11, 024044 (2019).CrossRefGoogle Scholar
- 18.A. Baidya, M. A. Ganayee, S. Jakka Ravindran, K. C. Tam, S. K. Das, R. H. Ras, and T. Pradeep, ACS Nano, 11, 11091 (2017).CrossRefGoogle Scholar
- 19.H. Soeta, S. Fujisawa, T. Saito, L. Berglund, and A. Isogai, ACS Appl. Mater. Interf., 7, 11041 (2015).CrossRefGoogle Scholar
- 20.T. Jayaramudu, H.-U. Ko, H. C. Kim, J. W. Kim, E. S. Choi, and J. Kim, Compos. Part B, 156, 43 (2019).CrossRefGoogle Scholar
- 21.H. Kim, J. R. Youn, and Y. S. Song, Nanotechnology, 29, 455702 (2018).CrossRefGoogle Scholar
- 22.J. M. Silva, H. S. Barud, A. B. Meneguin, V. R. L. Constantino, and S. J. L. Ribeiro, Appl. Clay. Sci., 168, 428 (2019).CrossRefGoogle Scholar
- 23.M. Santiago-Calvo, V. Blasco, C. Ruiz, R. París, F. Villafañe, and M. Á. Rodríguez-Pérez, J. Appl. Polym. Sci., 136, 47474 (2019).CrossRefGoogle Scholar
- 24.S. Alasti Bonab, J. Moghaddas, and M. Rezaei, Polymer, 172, 27 (2019).CrossRefGoogle Scholar
- 25.S. Wang, S. Xue, C. Ge, Q. Ren, D. Zhao, and W. Zhai, J. Cell. Plast., doi:10.1177/0021955X19841053 (2019).Google Scholar
- 26.X. Ji, D. Chen, J. Shen, and S. Guo, Chem. Eng. J., 370, 1341 (2019).CrossRefGoogle Scholar
- 27.Z.-J. Cao, W. Liao, S.-X. Wang, H.-B. Zhao, and Y.-Z. Wang, Chem. Eng. J., 361, 1245 (2019).CrossRefGoogle Scholar
- 28.Y. Chen, C. Weng, Z. Wang, T. Maertens, P. Fan, F. Chen, M. Zhong, J. Tan, and J. Yang, J. Supercrit. Fluids, 147, 107 (2019).CrossRefGoogle Scholar
- 29.S. Zhang, Z. Ren, S. He, Y. Zhu, and C. Zhu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 188 (2007).CrossRefGoogle Scholar
- 30.L. Liao, X. Li, Y. Wang, H. Fu, and Y. Li, Ind. Eng. Chem. Res., 55, 11689 (2016).CrossRefGoogle Scholar
- 31.J. Lubczak and E. Chmiel, Macromol. Res., 27, 543 (2019).CrossRefGoogle Scholar
- 32.B. Zhao, D.-Y. Liu, W.-J. Liang, F. Li, J.-S. Wang, and Y.-Q. Liu, J. Anal. Appl. Pyrolysis, 124, 247 (2017).CrossRefGoogle Scholar
- 33.X. Chen, L. Huo, C. Jiao, and S. Li, J. Anal. Appl. Pyrolysis, 100, 186 (2013).CrossRefGoogle Scholar
- 34.B. Zhao, S. Xu, M. Adeel, and S. Zheng, Polymer, 160, 82 (2019).CrossRefGoogle Scholar
- 35.C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, and J. Zhao, Macromol. Res., 26, 346 (2018).CrossRefGoogle Scholar
- 36.X. Liu, J. Guo, W. Tang, H. Li, X. Gu, J. Sun, and S. Zhang, Compos. Part A: Appl. Sci. Manuf., 119, 291 (2019).CrossRefGoogle Scholar
- 37.W. Xi, L. Qian, and L. Li, Polymers (Basel), 11, 207 (2019).CrossRefGoogle Scholar
- 38.X. Liu, S. Qin, H. Li, J. Sun, X. Gu, S. Zhang, and J. C. Grunlan, Macromol. Mater. Eng., 304, 1800531 (2018).CrossRefGoogle Scholar
- 39.H. Ding, K. Huang, S. Li, L. Xu, J. Xia, and M. Li, Polym. Test., 62, 325 (2017).CrossRefGoogle Scholar