Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2048–2056 | Cite as

Composite Nonwovens Based on Carboxymethyl Cellulose for Wound Dressing Materials

  • Yoonjin Kim
  • Song Jun Doh
  • Gyu Dong Lee
  • Chaehwa Kim
  • Jung Nam ImEmail author
Article
  • 22 Downloads

Abstract

Composite nonwovens were prepared by the lamination of polypropylene spunbond nonwoven with carboxymethyl cellulose/hollow viscose rayon blend nonwoven and their various properties, such as liquid handling properties, wet tensile strength, moisture evaporation rate, and in-vitro cytotoxicity, were evaluated for moist wound dressing applications. Fluid retention capacity, wet dimensional stability, and wet tensile strength of carboxymethyl cellulose/hollow viscose rayon nonwoven were significantly improved by the lamination with polypropylene spunbond nonwoven. The polypropylene spunbond nonwoven layer did not affect the liquid spreadability and moisture evaporation. The composite nonwoven was not cytotoxic. Considering liquid handling properties and wet properties, composite nonwoven, in which polypropylene spunbond nonwoven on both sides of carboxymehtyl cellulose/hollow viscose rayon nonwoven, was found to be the most desirable wound dressing material of those assessed in this study.

Keywords

Carboxymethyl cellulose Hollow viscose rayon Polypropylene spunbond Moist wound dressing Liquid handling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This study was financially supported by the National Research Foundation of Korea (EO190003).

References

  1. 1.
    A. G. Haddad, G. Giatsidis, D. P. Orgill, and E. G. Halvorson, Clin. Plast. Surg., 44, 627 (2017).CrossRefGoogle Scholar
  2. 2.
    M. N. Queiroz, R. A. Araujo, A. F. Rubira, and R. Silva, J. Colloid. Interf. Sci., 106, 533 (2019).Google Scholar
  3. 3.
    Q. Lei, Z. Li, R. Xu, Y. Wang, H. Li, Y. Wang, M. Liu, S. Yang, R. Zhan, J. Zhao, B. Liu, X. Zhang, W. He, J. Wu, H. Xia, and G. Luo, RSC Adv., 101, 99595 (2016).CrossRefGoogle Scholar
  4. 4.
    H. M. Fahmy, A. A. Aly, and A. Abou-Okeil, Int. J. Biol. Macromol., 114, 929 (2018).CrossRefGoogle Scholar
  5. 5.
    S. Thomas and M. Uzen in “Advanced Textiles for Wound Care”, 2nd ed. (S. Rajendran Eds.), Vol.12, pp.23–54, Elsevier, Amsterdam, 2019.Google Scholar
  6. 6.
    S. Ghalei, J. Nourmohammadi, A. Solouk, and H. Mirzadeh, Colloid. Surface B., 82, 172 (2018).Google Scholar
  7. 7.
    S. W. Ali, M. Shahadat, P. Sultana, and S. Z. Ahammad in “Advanced Textiles for Wound Care”, 2nd ed. (S. Rajendran Eds.), Vol.12, pp.489–508, Elsevier, Amsterdam, 2019.Google Scholar
  8. 8.
    S. Dhivya, V. V. Padmaand, and E. Santhini, Biomedicine (Taipei), 5, 22 (2015).CrossRefGoogle Scholar
  9. 9.
    M. T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, and Z. Mansoorimoghadam, Int. J. Biol. Macromol., 114, 1203 (2018).CrossRefGoogle Scholar
  10. 10.
    Y. Barnea, J. Weiss, and E. Gur, Ther. Clin. Risk. Manag., 6, 21 (2010).PubMedPubMedCentralGoogle Scholar
  11. 11.
    S. Hu, X. Cai, X. Qu, B. Yu, C. Yan, J. Yang, F. Li, Y. Zheng, and X. Shi, Int. J. Biol. Macromol., 123, 1320 (2019).CrossRefGoogle Scholar
  12. 12.
    Y. N. Yoon, J. N. Im, and S. J. Doh, Fiber. Polym., 14, 1012 (2013).CrossRefGoogle Scholar
  13. 13.
    M. J. Waring and D. Parsons, Biomaterials, 903, 9 (2010).Google Scholar
  14. 14.
    W. Roggenstein, Lenzinger Berichte, 89, 72 (2011).Google Scholar
  15. 15.
    P. Wimmer, Lenzinger Berichte, 91, 61 (2013).Google Scholar
  16. 16.
    M. Einzmann, J. Schmidtbauer, B. Schachtner, and S. Jary, Lenzinger Berichte, 84, 42 (2005).Google Scholar
  17. 17.
    G. H. Kim, J. H. Youk, Y. J. Kim, and J. N. Im, Fiber. Polym., 17, 1104 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Jackson, J. Lovett, and C. Stephenson, “An Assessment of the Conformability of Superabsorbent Dressings”, Wounds UK Annual Conference, 2016.Google Scholar
  19. 19.
    B. Tao and X. Wang, U. S. Patent, 2015/0335492 (2015).Google Scholar
  20. 20.
    W. Li, J. Zhou, and Y. Xu, Biomed., 3, 617 (2015).Google Scholar
  21. 21.
    S. Vieira, A. R. Franco, E. M. Fernandes, S. Amorim, H. Ferreira, R. A. Pires, R. L. Reis, A. Martins, and N. M. Neves, Colloid. Surface B., 167, 310 (2018).CrossRefGoogle Scholar
  22. 22.
    T. H. Kim, I. K. Park, J. W. Nah, Y. J. Choi, and C. S. Cho, Biomaterials, 25, 3783 (2004).CrossRefGoogle Scholar
  23. 23.
    K. G. Harding, Int. Wound. J., 5, iii–12 (2008).Google Scholar
  24. 24.
    S. Thomas, J. Wound. Care, 7, 327 (1997).Google Scholar
  25. 25.
    E. Vorbeck and A. Marine, “Polysaccharide Based Gel-Forming Dressing Manages Leg Wounds without Shrinkage of Dressing and Dressing Disintegration”, SAWC Fall Conference, 2013.Google Scholar
  26. 26.
    K. Cutting, Br. J. Community Nurs., 8, 3 (2003).CrossRefGoogle Scholar
  27. 27.
    M. Butcher, “The Management of Skin Maceration”, Nursing Times, Vol. 96, p.35, EMAP Publishing Ltd. Co., London, 2000.Google Scholar
  28. 28.
    T. Heinze and A. Koschella, Macromol. Symp., 13, 223 (2005).Google Scholar
  29. 29.
    A. Grande and D. Sivakumaran, “Assessment of the Wet Strength and Log Reduction Capacity of a Silver Alginate Dressing”, SAWC Fall Conference, 2013.Google Scholar
  30. 30.
    M. Wynne, “The Wound Healing Process”, p.298, Health Service Executive National Wound Management Guidelines, 2018.Google Scholar
  31. 31.
    M. E. Hiro, Y. N. Pierpont, F. Ko, T. E. Wright, M. C. Robson, and W. G. Payne, ePlasty, 12, 409 (2012).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Yoonjin Kim
    • 1
  • Song Jun Doh
    • 1
  • Gyu Dong Lee
    • 1
  • Chaehwa Kim
    • 1
  • Jung Nam Im
    • 1
    Email author
  1. 1.Technical Textile & Materials R&D GroupKorea Institute of Industrial TechnologyAnsanKorea

Personalised recommendations