Fibers and Polymers

, Volume 20, Issue 10, pp 2090–2098 | Cite as

Electrospun Nanofibers: Preparation, Characterization and Atmospheric Fog Capturing Capabilities

  • M. A. Alamir
  • I. M. AlarifiEmail author
  • W. A. Khan
  • W. S. Khan
  • R. AsmatuluEmail author


This study was aimed at enhancing the capability of electrospun nanofiber mats to convert atmospheric fog into fresh water effectively. The demand for clean water has been increasing worldwide, and this problem can be addressed economically by utilizing new technologies. It is known that atmospheric fresh water found on the earth is about 0.03 % of the total global fresh water, which is more than enough to meet the demand for fresh water in many locations. Although desalination may produce a significant quantity of fresh water, it is a fairly costly, energy-intensive, and time-consuming process. In this research, the electrospinning method was used to fabricate superhydrophilic polyacrylonitrile (PAN) and polyvinyl chloride (PVC) nanofiber mats incorporated with hydrophilic polymers of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and chitosan at various direct current (DC) voltages, pump speeds, and tip-to-collector distances, in order to evaluate their capability of capturing fresh water from atmospheric fog. Fourier transform infrared (FTIR) and Raman spectroscopy were used to characterize the chemical structures of the nanofibers, while scanning electron microscopy (SEM) and water contact angle measurement methods were used to determine the morphology and surface hydrophobicity, respectively, of the produced nanofibers. At higher concentrations of PVP, PEG, and chitosan (e.g., 16 and 32 wt%), most of the electrospun nanofibers were superhydrophilic, with water contact angle values less than 5° in 0.5 seconds. Humidifier and humidity test chamber results indicated that superhydrophilic nanofibers could absorb up to 69 % of their weight in a shorter period of time. This scalable process can be extended to capturing a larger quantity of fresh water from the atmosphere.


Electrospinning Superhydrophilic nanofibers Fog harvesting Fresh water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Wichita State University for technical and financial support of the present research study.


  1. 1.
    S. Zhang, J. Huang, Z. Chen, and Y. Lai, Small, 13, 1602992 (2017).CrossRefGoogle Scholar
  2. 2.
    A. Pal, K. Y. Gin, A. Y. Lin, and M. Reinhard, Sci. Total Environ., 408, 6062 (2010).CrossRefGoogle Scholar
  3. 3.
    H. Zhu, Z. Guo, and W. Liu, Chem. Commun., 52, 3863 (2016).CrossRefGoogle Scholar
  4. 4.
    Global Risks 2015, World Economic Forum, Geveva, (2015).
  5. 5.
    S. H. Schneider and F. K. Hare, “Encyclopedia of Climate and Weather”, p.3, Oxford University Press New York, 1996.Google Scholar
  6. 6.
    A. Almasian, GH. G. Fard, M. Mirjalili, and M. P. Gashti, J. Ind. Eng. Chem., 62, 155 (2018).CrossRefGoogle Scholar
  7. 7.
    K. Golovin, M. Boban, J. M. Mabry, and A. Tuteja, ASC Appl. Mater. Interf., 9, 11212 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Bai, J. Ju, R. Sun, Y. Chen, Y. Zheng, and L. Jiang, Adv. Mater., 23, 3708 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Hou, Y. Chen, Y. Xue, Y. Zheng, and L. Jiang, Langmuir, 28, 4743 (2012).CrossRefGoogle Scholar
  10. 10.
    N. Thakur, A. Baji, and A. S. Ranganath, Appl. Surface Sci., 433, 1024 (2018).CrossRefGoogle Scholar
  11. 11.
    I. M. Alarifi, A. Alharbi, W. Khan, A. Swindle, and R. Asmatulu, Materials, 8, 7017 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Lotfian, C. Giraudmaillet, A. Yoosefinejad, V. K. Thakur, and H. Y. Nezhad, ACS Omega, 3, 8891 (2018).CrossRefGoogle Scholar
  13. 13.
    H. Wu, Y. Chen, Q. Chen, Y. Ding, X. Zhou, and H. Gao, J. Nanomater., 2013, 10 (2013).Google Scholar
  14. 14.
    E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Chem. Phys. Lett., 413, 188 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Sheet, M. Vinothkannan, S. Balasubramaniam, S. A. Subramaniyan, S. Acharya, and Y. S. Lee, ACS Omega, 3, 14551 (2018).CrossRefGoogle Scholar
  16. 16.
    G. I. Taylor, Proc. Royal. Soc. A., 313, 453 (1969).CrossRefGoogle Scholar
  17. 17.
    M. A. Alamir, MS Thesis, Wichita State University, Kansas, 2017.Google Scholar
  18. 18.
    Y.-S. Shin, J. S. Borah, A. Haider, S. Kim, M.-W. Huh, and I.-K. Kang, J. Nanomater., 2013, 152 (2013).Google Scholar
  19. 19.
    R. Zhao, X. Li, B. Sun, M. Shen, X. Tan, Y. Ding, Z. Jiang, and C. Wang, Chem. Eng. J., 268, 290 (2015).CrossRefGoogle Scholar
  20. 20.
    Almasian, G. C. Fard, M. Mirjalili, and M. P. Gashti, J. Ind. Eng. Chem., 62, 146 (2018).CrossRefGoogle Scholar
  21. 21.
    N. Nuraje, W. S. Khan, Y. Lei, M. Ceylan, and R. Asmatulu, J. Mater. Chem. A, 1, 1929 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Alarifi, W. S. Khan, A. S. Rahman, Y. Kostogorova-Beller, and R. Asmatulu, Fiber. Polym., 17, 1449 (2016).CrossRefGoogle Scholar
  23. 23.
    R. Asmatulu and W. S. Khan, “Synthesis and Applications of Electrospun Nanofibers”, p.306, Elsevier, 2018.Google Scholar
  24. 24.
    N. Nuraje, R. Asmatulu, and G. Mul, “Green Photo-active Nanomaterials: Sustainable Energy and Environmental Remediation”, p.414, Royal Society of Chemistry, 2015.Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringWichita State UniversityWichitaUSA
  2. 2.Department of Mechanical and Industrial EngineeringMajmaah UniversityMajmaahSaudi Arabia
  3. 3.Department of Mechanical EngineeringPrince Mohammad Bin Fahd UniversityAl KhobarSaudi Arabia
  4. 4.Department of Mechanical Engineering, Higher Colleges of TechnologyDubai Men’s CollegeDubaiUAE
  5. 5.Department of Mechanical EngineeringJazan UniversityJazanSaudi Arabia

Personalised recommendations