Fibers and Polymers

, Volume 20, Issue 10, pp 2078–2089 | Cite as

Single-nozzle Core-shell Electrospun Nanofibers of PVP/Dextran as Drug Delivery System

  • A. Meera Moydeen
  • M. Syed Ali Padusha
  • Badr M. Thamer
  • Anis Ahamed N.
  • Abdullah M. Al-Enizi
  • Hany El-Hamshary
  • Mohamed H. El-NewehyEmail author


Ciprofloxacin-loaded poly(vinylpyrrolidinone) (PVP) and dextran sulfate (Dex) (PVP/Dex) nanofibers were prepared using the emulsion electrospinning method. The physical and morphological characteristics of the prepared nanofibers were evaluated by conducting a Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The polymer-polymer and polymer-drug interactions were determined using differential scanning calorimetry (DSC). Moreover, the formation of the core-shell structure was confirmed by transmission electron microscopy (TEM) and confocal laser microscopy. The sustained release behavior was evaluated using ultraviolet-visible (UV-vis) spectroscopy, and its kinetic mechanism was investigated using Korsmeyer-Peppas, Peppas-Sahlin, and Weibull models by a non-linear regression equation. The antibacterial properties were evaluated using the disc diffusion method with respect to several wound gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Staphylococcus aureus, and Klebsiella pneumoniae) and gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhimurium, and Proteus vulgaris). In general, the release behavior of Ciprofloxacin from PVP/Dex is controlled by diffusion in the delivery system.


Drug delivery Antibacterial study Green electro-spinning Single nozzle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was supported by Researchers Supporting Project Number (RSP-2019/65), King Saud University, Riyadh, Saudi Arabia.


  1. 1.
    M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B Appl. Biomater., 67, 675 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    L. A. Smith, X. Liu, and P. X. Ma, Soft Matter., 4, 2144 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, and W. Chen, J. Control. Release, 108, 237 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Zheng, S. Wang, S. Wen, M. Shen, M. Zhu, and X. Shi, Biomaterials, 34, 1402 (2013).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Yang, J. Wang, Y. Wang, L. Li, X. Guo, and S. Zhou, ACS Nano, 9, 1161 (2015).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Yang, X. Li, Y. He, J. Ma, G. Ni, and S. Zhou, Prog. Polym. Sci., 81, 80 (2018).CrossRefGoogle Scholar
  8. 8.
    Y. Gao, Y. Bach Truong, Y. Zhu, and I. L. Kyratzis, J. Appl. Polym. Sci., 131, 40797 (2014).CrossRefGoogle Scholar
  9. 9.
    K. A. Rieger, N. P. Birch, and J. D. Schiffman, Carbohydr. Polym., 139, 131 (2016).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Li, R. Fu, C. Yu, Z. Li, H. Guan, D. Hu, D. Zhao, and L. Lu, Int. J. Nanomed., 8, 4131 (2013).Google Scholar
  11. 11.
    C. Han, N. Cai, V. Chan, M. Liu, X. Feng, and F. Yu, Colloids Surf. A: Physicochem. Eng. Asp., 559, 104 (2018).CrossRefGoogle Scholar
  12. 12.
    A. R. Unnithan, N. A. Barakat, P. B. Pichiah, G. Gnanasekaran, R. Nirmala, Y. S. Cha, C. H. Jung, M. H. El-Newehy, and H. Y. Kim, Carbohydr. Polym., 90, 1786 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    K. Raghunath, K. P. Rao, B. Nagarajan, and K. T. Joseph, Eur. Polym. J., 21, 195 (1985).CrossRefGoogle Scholar
  14. 14.
    A. L. Yarin, Polym. Adv. Technol., 22, 310 (2011).CrossRefGoogle Scholar
  15. 15.
    N. Cai, C. Han, X. Luo, G. Chen, Q. Dai, and F. Yu, Macromol. Mater. Eng., 302, 1600364 (2017).CrossRefGoogle Scholar
  16. 16.
    C. Liu, K. G. H. Desai, X. Tang, and X. Chen, Dry. Technol., 24, 769 (2006).CrossRefGoogle Scholar
  17. 17.
    L. Serra, J. Doménech, and N. A. Peppas, Biomaterials, 27, 5440 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    J. Siepmann and N. A. Peppas, Adv. Drug Deliv. Rev., 48, 139 (2001).PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Y. Fu and W. J. Kao, Expert Opin. Drug Deliv., 7, 429 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    C. Vineis and A. Varesano (Eds.), Natural Polymer-based Electrospun Fibers for Antibacterial Uses, In: Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices - Principles and Advances, Woodhead Publishing Series in Biomaterials, 275 (2018).Google Scholar
  21. 21.
    O. Bshena, T. Heunis, L. M. Dicks, and B. Klumperman, Future. Med. Chem., 3, 1821 (2011).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Su, Q. Su, W. Liu, M. Lim, J. R. Venugopal, X. Mo, S. Ramakrishna, S. S. Al-Deyab, and M. H. El-Newehy, Acta Biomater., 8, 763 (2012).PubMedCrossRefGoogle Scholar
  23. 23.
    A. M. Moydeen, M. S. A. Padusha, E. F. Aboelfetoh, S. S. Al-Deyab, and M. H. El-Newehy, Int. J. Biol. Macromol., 116, 1250 (2018).PubMedCrossRefGoogle Scholar
  24. 24.
    Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater., 15, 1929 (2003).CrossRefGoogle Scholar
  25. 25.
    T. Roy, P. P. Maity, A. P. Rameshbabu, B. Das, A. John, A. Dutta, S. K. Ghorai, S. Chattopadhyay, and S. Dhara, Bioengineering, 5, 68 (2018).PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    D. G. Yu, X. X. Shen, C. Branford-White, K. White, L. M. Zhu, and S. W. Bligh, Nanotechnology, 20, 055104 (2009).PubMedCrossRefGoogle Scholar
  27. 27.
    G. M. Kim, K. H. Le, S. M. Giannitelli, Y. J. Lee, A. Rainer, and M. Trombetta, J. Mater. Sci. Mater. Med., 24, 1425 (2013).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. S. Kumar, A. R. Unnithan, D. Sen, C. S. Kim, and Y. S. Lee, Colloids Surf. A: Physicochem. Eng. Asp., 477, 77 (2015).CrossRefGoogle Scholar
  29. 29.
    D. Mondal, M. M. R. Mollick, B. Bhowmick, D. Maity, M. K. Bain, D. Rana, A. Mukhopadhyay, K. Dana, and D. Chattopadhyay, Prog. Nat. Sci.: Mater. Int., 23, 579 (2013).CrossRefGoogle Scholar
  30. 30.
    Y. Fu, X. Li, C. Sun, Z. Ren, W. Weng, C. Mao, and G. Han, ACS Appl. Mater. Interf., 7, 25514 (2015).CrossRefGoogle Scholar
  31. 31.
    M. S. Birajdar and J. Lee, Chem. Eng. Sci., 288, 1 (2016).CrossRefGoogle Scholar
  32. 32.
    T. T. N. Thuy, C. Ghosh, S. G. Hwang, N. Chanunpanich, and J. S. Park, Int. J. Pharm., 439, 296 (2012).CrossRefGoogle Scholar
  33. 33.
    Y. Shi, Z. Wei, H. Zhao, T. Liu, A. Dong, and J. Zhang, J. Nanosci. Nanotechnol., 13, 3855 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    R. Gouda, H. Baishya, and Z. Qing, J. Devel. Drugs, 6, 1000171 (2017).Google Scholar
  35. 35.
    N. A. Peppas, Pharm. Acta Helv., 60, 110 (1985).PubMedPubMedCentralGoogle Scholar
  36. 36.
    F. Rehman, P. L. O. Volpe, and C. Airoldi, Coll. Surf. B: Biointerfaces, 119, 82 (2014).CrossRefGoogle Scholar
  37. 37.
    Q.-Z. Zhai, Mater. Sci. Eng. C, 32, 2411 (2012).CrossRefGoogle Scholar
  38. 38.
    N. A. Peppas and J. J. Sahlin, Int. J. Pharm., 57, 169 (1989).CrossRefGoogle Scholar
  39. 39.
    J. M. Unagolla and A. C. Jayasuriya, Eur. J. Pharm. Sci., 114, 199 (2018).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    A. Azadi, M. Hamidi, and M.-R. Rouini, Int. J. Biol. Macromol., 62, 523 (2013).PubMedCrossRefGoogle Scholar
  41. 41.
    P. Costa and J. M. S. Lobo, Eur. J. Pharm. Sci., 13, 123 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm., 67, 217 (2010).PubMedGoogle Scholar
  43. 43.
    K. H. Ramteke, P. A. Dighe, A. R. Kharat, and S. V. Patil, Sch. Acad. J. Pharm., 3, 388 (2014).Google Scholar
  44. 44.
    J. Mukherjee, P. T. Wong, S. Tang, K. Gam, A. Coulter, J. R. Baker, and S. K. Choi, Mol. Pharm., 12, 4498 (2015).PubMedCrossRefGoogle Scholar
  45. 45.
    K. J. Carroll, Control. Clin. Trials, 24, 682 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Giacometti, O. Cirioni, A. M. Schimizzi, M. S. Del Prete, F. Barchiesi, M. M. D’Errico, E. Petrelli, and G. Scalise, J. Clin. Microbiol., 38, 918 (2000).PubMedPubMedCentralGoogle Scholar
  47. 47.
    A. Mohammed, M. E. Seid, T. Gebrecherkos, M. Tiruneh, and F. Moges, Int. J. Microbiol., 2017, 8953829 (2017).PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • A. Meera Moydeen
    • 1
    • 3
  • M. Syed Ali Padusha
    • 3
  • Badr M. Thamer
    • 1
  • Anis Ahamed N.
    • 2
  • Abdullah M. Al-Enizi
    • 1
  • Hany El-Hamshary
    • 1
    • 4
  • Mohamed H. El-Newehy
    • 1
    • 4
    Email author
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.PG and Research Department of Chemistry, Jamal Mohamed CollegeBharathidasan UniversityTiruchirapalliIndia
  4. 4.Department of Chemistry, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations