Fibers and Polymers

, Volume 20, Issue 8, pp 1577–1585 | Cite as

Effect of Graphene Oxide Incorporation into Electrospun Cellulose Acetate Scaffolds on Breast Cancer Cell Culture

  • Yizao Wan
  • Zhonghong Lin
  • Deqiang Gan
  • Teng Cui
  • Meirong Wan
  • Fanglian Yao
  • Quanchao ZhangEmail author
  • Honglin LuoEmail author


Graphene-based nanomaterials have been used as biomaterials to enhance cell adhesion, growth, and differentiation. However, the effect of graphene materials on cancer cell behavior has not been thoroughly investigated. Herein, we have incorporated graphene oxide (GO) into cellulose acetate (CA) to develop nanofibrous scaffolds for in vitro cancer cell culture, which is a crucial step for drug screening and cancer research. The Go/CA scaffolds were seeded with breast cancer cells and cell viability, proliferation, adhesion, infiltration, and morphology were assessed. Mechanical characterization demonstrated that the mechanical properties of GO/CA scaffolds were significantly better than bare CA scaffold and improved with increasing GO content. More importantly, the in vitro cell studies showed that the cancer cells on GO/CA scaffolds had significantly higher viability and better cell adhesion and growth than bare CA. Our results confirm an important role of GO in improving mechanical properties and cancer cell performance on GO/CA scaffolds. These results suggest the potential of the GO/CA scaffolds as a promising candidate for in vitro cancer models.


Graphene oxide Cellulose fibers Cancer model Scaffold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Key Project of Natural Science Foundation of Jiangxi Province (Grant no. 20161ACB20018) and the National Natural Science Foundation of China (Grant nos. 31660264, 51572187).

Supplementary material

12221_2019_9133_MOESM1_ESM.pdf (3 mb)
Effect of Graphene Oxide Incorporation into Electrospun Cellulose Acetate Scaffolds on Breast Cancer Cell Culture


  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).CrossRefPubMedGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Park and R. S. Ruoff, Nat. Nanotechnol., 4, 217 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 48, 2127 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Verdejo, M. M. Bernal, L. J. Romasanta, and M. A. Lopez-Manchado, J. Mater. Chem., 21, 3301 (2011).CrossRefGoogle Scholar
  6. 6.
    R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, Compos. Sci. Technol., 72, 1459 (2012).CrossRefGoogle Scholar
  7. 7.
    Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    C. Liang, Y. Luo, G. Yang, D. Xia, L. Liu, X. Zhang, and H. Wang, Nanoscale Res. Lett., 13, 15 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    A. M. Pinto, J. Cabral, D. A. P. Tanaka, A. M. Mendes, and F. D. Magalhães, Polym. Int., 62, 33 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Wang, Z. Zhang, G. Su, X. Sun, Y. Wang, Z. Fang, M. Chen, and Q. Zhang, J. Biomater. Tiss. Eng., 7, 1000 (2017).CrossRefGoogle Scholar
  11. 11.
    J. T. Jeong, M. K. Choi, Y. Sim, J. T. Lim, G. S. Kim, M. J. Seong, J. H. Hyung, K. S. Kim, A. Umar, and S. K. Lee, Sci. Rep., 6, 33835 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    X. Y. Liu, H. Shen, S. J. Song, W. Chen, and Z. J. Zhang, Colloid Surface B, 159, 251 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, Adv. Mater., 20, 3557 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, Y. Zhou, X. Wang, Y. Liu, S. Wen, X. Zheng, and P. Wang, Mater. Lett., 220, 1 (2018).CrossRefGoogle Scholar
  15. 15.
    S. Yıldırım, T. T. Demirtaş, C. A. Dinçer, N. Yıldız, and A. Karakeçili, J. Supercrit. Fluid, 133, 156 (2018).CrossRefGoogle Scholar
  16. 16.
    S. Agarwal, X. Zhou, F. Ye, Q. He, G. C. Chen, J. Soo, F. Boey, H. Zhang, and P. Chen, Langmuir, 26, 2244 (2010).CrossRefPubMedGoogle Scholar
  17. 17.
    E. Nishida, H. Miyaji, A. Kato, H. Takita, T. Iwanaga, T. Momose, K. Ogawa, S. Murakami, T. Sugaya, and M. Kawanami, Int. J. Nanomed., 11, 2265 (2016).Google Scholar
  18. 18.
    N. Mauro, C. Scialabba, G. Pitarresi, and G. Giammona, Int. J. Pharm., 526, 167 (2017).CrossRefPubMedGoogle Scholar
  19. 19.
    E. S. Kang, I. Song, D. S. Kim, U. Lee, J. K. Kim, H. Son, J. Min, and T. H. Kim, Colloid Surface B, 169, 20 (2018).CrossRefGoogle Scholar
  20. 20.
    A. Aihara, N. Abe, K. Saruhashi, T. Kanaki, and T. Nishino, Cancer. Sci., 107, 1858 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J. L. Horning, S. K. Sahoo, S. Vijayaraghavalu, S. Dimitrijevic, J. K. Vasir, T. K. Jain, A. K. Panda, and V. Labhasetwar, Mol. Pharm., 5, 849 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Zang, X. Zhang, J. Sun, and S.-T. Yang, Process Biochem., 51, 772 (2016).CrossRefGoogle Scholar
  23. 23.
    O. Hartman, C. Zhang, E. L. Adams, M. C. Farach-Carson, N. J. Petrelli, B. D. Chase, and J. F. Rabolt, Biomacromolecules, 10, 2019 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    W. Xu, J. Qian, Y. Zhang, A. Suo, N. Cui, J. Wang, Y. Yao, and H. Wang, Acta Biomater, 33, 131 (2016).CrossRefPubMedGoogle Scholar
  25. 25.
    H. Luo, P. Gu, G. Xiong, D. Hu, Y. Zhu, and Y. Wan, Cell Chem. Technol., 50, 49 (2016).Google Scholar
  26. 26.
    B. J. Gill and J. L. West, J. Biomech., 47, 1969 (2014).CrossRefPubMedGoogle Scholar
  27. 27.
    G. Rijal and W. Li, Biomaterials, 81, 135 (2016).CrossRefPubMedGoogle Scholar
  28. 28.
    C. S. Szot, C. F. Buchanan, P. Gatenholm, M. N. Rylander, and J. W. Freeman, Mater. Sci. Eng. C, 31, 37 (2011).CrossRefGoogle Scholar
  29. 29.
    W. Hu, S. Chen, J. Yang, Z. Li, and H. Wang, Carbohydr. Polym., 101, 1043 (2014).CrossRefPubMedGoogle Scholar
  30. 30.
    J. J. Campbell, A. Husmann, R. D. Hume, C. J. Watson, and R. E. Cameron, Biomaterials, 114, 34 (2017).CrossRefPubMedGoogle Scholar
  31. 31.
    P. Qiu, X. Qu, D. J. Brackett, M. R. Lerner, D. Li, and C. Mao, Adv. Mater., 25, 2492 (2013).CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Wan, F. Zhang, C. Li, G. Xiong, Y. Zhu, and H. Luo, J. Mater. Chem. A, 3, 24389 (2015).CrossRefGoogle Scholar
  33. 33.
    P. Y. Collartdutilleul, E. Secret, I. Panayotov, D. P. D. Deville, R. J. Martínpalma, V. Torrescosta, M. Martin, C. Gergely, J. O. Durand, and F. Cunin, ACS Appl. Mater. Interfaces, 6, 1719 (2014).CrossRefGoogle Scholar
  34. 34.
    C. Galli, L. Parisi, M. Piergianni, A. Smerieri, G. Passeri, S. Guizzardi, F. Costa, S. Lumetti, E. Manfredi, and G. M. Macaluso, Acta Biomater, 42, 147 (2016).CrossRefPubMedGoogle Scholar
  35. 35.
    B. Ardeshirzadeh, N. A. Anaraki, M. Irani, L. R. Rad, and S. Shamshiri, Mater. Sci. Eng. C, 48, 384 (2015).CrossRefGoogle Scholar
  36. 36.
    Y. Liu, M. Park, H. K. Shin, B. Pant, J. Choi, Y. W. Park, J. Y. Lee, S.-J. Park, and H.-Y. Kim, J. Ind. Eng. Chem., 20, 4415 (2014).CrossRefGoogle Scholar
  37. 37.
    T. N. Blanton and D. Majumdar, Powder Diffr., 28, 68 (2013).CrossRefGoogle Scholar
  38. 38.
    W. Zhou, J. He, S. Du, S. Cui, and W. Gao, Iran Polym. J., 20, 389 (2011).Google Scholar
  39. 39.
    J. X. He, Y. Y. Tang, and S. Y. Wang, Iran Polym. J., 16, 807 (2007).Google Scholar
  40. 40.
    R. Kabiri and H. Namazi, Cellulose, 21, 3527 (2014).CrossRefGoogle Scholar
  41. 41.
    R. K. Layek, K. R. Ramakrishnan, E. Sarlin, O. Orell, M. Kanerva, J. Vuorinen, and M. Honkanen, J. Mater. Chem. A, 6, 13203 (2018).CrossRefGoogle Scholar
  42. 42.
    H. Liu and Y. L. Hsieh, J. Polym. Sci. Pol. Phys., 40, 2119 (2002).CrossRefGoogle Scholar
  43. 43.
    M. E. Uddin, R. K. Layek, H. Y. Kim, N. H. Kim, D. Hui, and J. H. Lee, Compos. Part B, 90, 223 (2016).CrossRefGoogle Scholar
  44. 44.
    N. M. Aboamera, A. Mohamed, A. Salama, T. A. Osman, and A. Khattab, Cellulose, 25, 4155 (2018).CrossRefGoogle Scholar
  45. 45.
    W. Zhang, A. A. Dehghani-Sanij, and R. S. Blackburn, Prog. Nat. Sci., 18, 801 (2008).CrossRefGoogle Scholar
  46. 46.
    W. K. Zhu, W. Li, Y. He, and T. Duan, Appl. Surf. Sci., 338, 22 (2015).CrossRefGoogle Scholar
  47. 47.
    G. M. Dorris and D. G. Gray, Cell. Chem. Technol., 61, 545 (1978).Google Scholar
  48. 48.
    W. Li, T. Li, G. Li, L. An, F. Li, and Z. Zhang, Carbohydr. Polym., 168, 153 (2017).CrossRefPubMedGoogle Scholar
  49. 49.
    B. Zhang, P. Wei, Z. Zhou, and T. Wei, Adv. Drug. Deliv. Rev., 105, 145 (2016).CrossRefPubMedGoogle Scholar
  50. 50.
    Z. Q. Yan and W. Zhang, Front. Mater. Sci., 8, 107 (2014).CrossRefGoogle Scholar
  51. 51.
    T. A. Tabish, M. Z. I. Pranjol, F. Jabeen, T. Abdullah, A. Latif, A. Khalid, M. Ali, H. Hayat, P. G. Winyard, J. L. Whatmore, and S. Zhang, Appl. Mater. Today, 12, 389 (2018).CrossRefGoogle Scholar
  52. 52.
    S. Mullick Chowdhury, S. Dasgupta, A. E. McElroy, and B. Sitharaman, J. Appl. Toxicol., 34, 1235 (2014).CrossRefPubMedGoogle Scholar
  53. 53.
    K. H. Liao, Y. S. Lin, C. W. Macosko, and C. L. Haynes, ACS Appl. Mater. Interfaces, 3, 2607 (2011).CrossRefPubMedGoogle Scholar
  54. 54.
    K. Guiro, S. A. Patel, S. J. Greco, P. Rameshwar, and T. L. Arinzeh, PLoS One, 10, e0118724 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    J. Kazantseva, R. Ivanov, M. Gasik, T. Neuman, and I. Hussainova, ACS Biomater Sci. Eng., 4, 1622 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Y. J. Kim, H. I. Bae, O. K. Kwon, and M. S. Choi, Int. J. Biol. Macromol., 45, 65 (2009).CrossRefPubMedGoogle Scholar
  57. 57.
    B. Sun, Y. Z. Long, H. D. Zhang, M. M. Li, J. L. Duvail, X. Y. Jiang, and H. L. Yin, Prog. Polym. Sci., 39, 862 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Yizao Wan
    • 1
    • 2
  • Zhonghong Lin
    • 1
  • Deqiang Gan
    • 1
  • Teng Cui
    • 1
  • Meirong Wan
    • 1
  • Fanglian Yao
    • 3
  • Quanchao Zhang
    • 1
    Email author
  • Honglin Luo
    • 1
    • 2
    Email author
  1. 1.Institute of Advanced MaterialsEast China Jiaotong UniversityNanchangChina
  2. 2.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations