Advertisement

Fibers and Polymers

, Volume 20, Issue 11, pp 2416–2425 | Cite as

Mechanical and Thermal Properties of Knitted Fabrics Produced from Various Fiber Types

Article
  • 8 Downloads

Abstract

Although there are several parameters affecting fabric behavior, one of the most important factors that determines the fabric properties is the fiber type and its features. Many types of natural and chemical fibers can be used according to the usage areas and expected performance characteristics from the fabrics. Therefore, it has great importance to know the effects of fiber types, which have different sources, structures and properties, on the fabric properties. In this study, the performance and thermal comfort properties of nine different knitted fabrics made from natural, regenerated and synthetic fibers were investigated. Within this scope, air permeability, abrasion resistance, bursting strength, thermal properties such as thermal conductivity, thermal diffusivity, thermal resistance and thermal absorptivity of knitted fabrics made from different fiber types were measured. In general, it is concluded that the characteristic properties of the fibers are important in determining the mechanical and thermal properties of the fabrics.

Keywords

Knitted fabric Natural fiber Regenerated fiber Synthetic fiber Mechanical properties Thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Song, “Improving Comfort in Clothing”, Woodhead Publishing Limited, Cambridge, 2011.CrossRefGoogle Scholar
  2. 2.
    W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibres”, Woodhead Publishing Limited, Cambridge, 2008.CrossRefGoogle Scholar
  3. 3.
    I. Frydrych, G. Dziworska, and J. Bilska, Fibres Text. East. Eur., 10, 40 (2002).Google Scholar
  4. 4.
    S. B. Stanković, D. Popović, and G. B. Poparić, Polym. Test., 27, 41 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Cimilli, B. U. Nergis, C. Candan, and M. Ozdemir, Text. Res. J., 80, 948 (2009).CrossRefGoogle Scholar
  6. 6.
    A. Majumdar, S. Mukhopadhyay, and R. Yadav, Int. J. Therm. Sci., 49, 2042 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Bivainytė, D. Mikučionienė, and P. Kerpauskas, Material Sci., 18, 167 (2012).Google Scholar
  8. 8.
    S. K. An, H. J. Gam, and H. Cao, Cloth. Text. Res. J., 31, 157 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Mikučioniene and E. Arbataitis, Fibres Text. East. Eur., 3, 76 (2013).Google Scholar
  10. 10.
    M. Tausif, F. Ahmad, U. Hussain, A. Basit, and T. Hussain, J. Clean. Prod., 89, 110 (2015).CrossRefGoogle Scholar
  11. 11.
    H. G. Atasağun, E. Oner, A. Okur, and A. R. Beden, J. Text. Inst., 106, 523 (2015).CrossRefGoogle Scholar
  12. 12.
    G. Karthikeyan, G. Nalankilli, O. L. Shanmugasundaram, and C. Prakash, Int. J. Cloth. Sci. Tech., 28, 420 (2016).CrossRefGoogle Scholar
  13. 13.
    V. Sular, E. Oner, G. Devrim, M. Aslan, and B. Eser, Fiber. Polym., 17, 2085 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Basit, W. Latif, S. A. Baig, and A. Afzal, Cloth. Text. Res. J., 36, 267 (2018).CrossRefGoogle Scholar
  15. 15.
    A. R. Bunsell, “Handbook of Tensile Properties of Textile and Technical Fibres”, Woodhead Publishing Limited, Cambridge, 2009.CrossRefGoogle Scholar
  16. 16.
    H. L. Needles, “Textile Fibers, Dyes, Finishes, and Processes: A Concise Guide”, Noyes Publications, New Jersey, 1986.Google Scholar
  17. 17.
    A. D. Gun, Fiber. Polym., 12, 258 (2011).CrossRefGoogle Scholar
  18. 18.
    C. Woodings, “Regenerated Cellulose Fibres”, Woodhead Publishing Limited, Cambridge, 2001.CrossRefGoogle Scholar
  19. 19.
    L. Hes, M. Araujo, and V. Djulay, Text. Res. J., 66, 245 (1996).CrossRefGoogle Scholar
  20. 20.
    L. Hes and I. Dolezal, J. Text. Mach. Soc. Japan, 42, 124 (1989).CrossRefGoogle Scholar
  21. 21.
    H. N. Yoon and A. Buckley, Text. Res. J., 54, 289 (1984).CrossRefGoogle Scholar
  22. 22.
    H. M. Elder and A. S. Ferguson, J. Text. Inst., 60, 251 (1969).CrossRefGoogle Scholar
  23. 23.
    J. Hu, “Fabric Testing”, Woodhead Publishing Limited, Cambridge, 2008.CrossRefGoogle Scholar
  24. 24.
    G. B. Kilic and V. Sular, Text. Res. J., 82, 755 (2012).CrossRefGoogle Scholar
  25. 25.
    B. P. Saville, “Physical Testing of Textiles”, Woodhead Publishing Limited, Cambridge, 1999.CrossRefGoogle Scholar
  26. 26.
    R. R. Franck, “Bast and other Plant Fibres”, Woodhead Publishing Limited, Cambridge, 2005.CrossRefGoogle Scholar
  27. 27.
    K. Kernaghan, “Biology and Processing of Flax”, M Publications, Belfast, 1992.Google Scholar
  28. 28.
    M. Kilic and A. Okur, Text. Res. J., 81, 156 (2011).CrossRefGoogle Scholar
  29. 29.
    L. Hes and J. Williams, “5-Laboratory Measurement of Thermo-physiological Comfort”, In Improving Comfort in Clothing, Woodhead Publishing Limited, Cambridge, 2011.Google Scholar
  30. 30.
    N. Oğlakcioğlu and A. Marmarali, Fibres Text. East. Eur., 15, 64 (2007).Google Scholar
  31. 31.
    D. Raja, C. Prakash, G. Gunasekaran, and C. V. Koushik, J. Text. Inst., 106, 359 (2015).CrossRefGoogle Scholar
  32. 32.
    S. S. Pavlović, S. B. Stanković, D. M. Popović, and G. B. Poparić, Polym. Test., 34, 97 (2014).CrossRefGoogle Scholar
  33. 33.
    P. Chidambaram, R. Govindan, and K. C. Venkatraman, African J. Basic Appl. Sci., 4, 60 (2012).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Textile Engineering DepartmentUsak UniversityUsakTurkey

Personalised recommendations