Fibers and Polymers

, Volume 20, Issue 11, pp 2227–2235 | Cite as

Synthesis of Hydrophilic Polyamide Copolymers Based on Nylon 6 and Nylon 46

  • Jong Yoon Lee
  • Bi Oh Oh
  • Hyun Hok Cho
  • Young Tai YooEmail author


Hydrophilic polyamide copolymers were successfully synthesized based on Nylon 6 and Nylon 46. This study aims to synthesize hydrophilic polyamides with moisture regain ability comparable to that of cotton. Random copolymers of nylon 6 and nylon 46 did not exhibit moisture regain rates higher than 6 %. A limited introduction of trifunctional monomer, diethylenetriamine (TA) produced the polyamides with higher mechanical strengths but failed to enhance the moisture regain. The incorporation of poly(ethylene oxide) oligomer with amine end groups increased the moisture regain but resulted in poor hydro-thermal and mechanical strength. A synergic effect was observed for copolymers which contain both nylon 46 units and PEO oligomer in regards to moisture regain capacity. Furthermore, the poor hydro-thermal and mechanical strength of Nylon/PEO segmented polyamides were drastically improved by the introduction of diethylenetriamine (TA). This study demonstrated that the polyamide copolymers comprising both PEO oligomer and TA unit record tensile moduli over 3 GPa and moisture regain rates of 8–10 wt%.


Nylon 6 Nylon 46 Poly(ethylene oxide) amine functionality Diethylenetriamine Moisture regain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Carothers, U.S. Patent, 2071250 (1937).Google Scholar
  2. 2.
    W. H. Carothers, U.S. Patent, 2071253 (1937).Google Scholar
  3. 3.
    H. Sekiguchi, P. R. Tsourkas, and B. Coutin, J. Polym. Sci., 42, 151 (1973).Google Scholar
  4. 4.
    P. A. Jarovitsky and F. L. Maynor, U.S. Patent, 3681293 (1972).Google Scholar
  5. 5.
    H. Tani and T. Konomi, J. Polym. Sci., 4, 301 (1966).CrossRefGoogle Scholar
  6. 6.
    C. E. Barnes, U.S. Patent, 3721652 (1973).Google Scholar
  7. 7.
    H. G. Jung, Fiber Technol. Ind., 8, 103 (2004).Google Scholar
  8. 8.
    H. Kim, G. Y. Han, D. G. Lee, E. G. Kim, and K. S. Kim, J. Ocean Eng. Technol, 9, 133 (1995).Google Scholar
  9. 9.
    S. H. Lee and H. H. Cho, J. Text. Sci. Eng., 48, 340 (2011).Google Scholar
  10. 10.
    W. Huang and J. H. Jang, Fiber. Polym., 10, 27 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Zaman, H. Liu, H. Xiao, F. Chibante, and Y. Ni, Carbohydr. Polym., 91, 560 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Kim, R. A. R. Bown, and R. N. Zare, Appl. Mater. Interf., 7, 1925 (2015).CrossRefGoogle Scholar
  13. 13.
    C. H. Zhang, F. Yang, W. Wang, and B. Chen, Sep. Purif. Technol, 61, 276 (2008).CrossRefGoogle Scholar
  14. 14.
    C. Wang, F. Yang, L. F. Liu, Z. Fu, and Y. Xue, J. Membr. Sci., 345, 223 (2009).CrossRefGoogle Scholar
  15. 15.
    W. Xu and X. Liu, Eur. Polym. J., 39, 199 (2003).CrossRefGoogle Scholar
  16. 16.
    W. S. Kang, M. Hur, J. O. Lee, and Y. H. Song, Appl. Surf. Sci., 295, 198 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Kristofic and A. Ujhelyiova, Fibres Text. East. Eur, 14, 58 (2006).Google Scholar
  18. 18.
    R. J. Gaymans, T. E. C. Van utteren, J. W. A. Van den berg, and J. Schuyer, J. Polym. Sci Polym. Chem. Ed., 15, 537 (1977).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Jong Yoon Lee
    • 1
  • Bi Oh Oh
    • 1
  • Hyun Hok Cho
    • 2
  • Young Tai Yoo
    • 1
    Email author
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulKorea
  2. 2.Department of Organic Material Science and EngineeringPusan National UniversityBusanKorea

Personalised recommendations