Fibers and Polymers

, Volume 20, Issue 11, pp 2376–2382 | Cite as

A Novel Natural Dye Derivative for Natural Fabric Supercritical Carbon Dioxide Dyeing Technology

  • Jinsong Wu
  • Hongjuan ZhaoEmail author
  • Mingyue Wang
  • Weiru Zhi
  • Xiaoqing Xiong
  • Laijiu ZhengEmail author


The supercritical carbon dioxide (SC-CO2) dyeing technology is a green dyeing technology, and the usage of natural dye makes SC-CO2 dyeing technology safer and more environment-friendly. Nevertheless, after using natural dye in SC-CO2 dyeing, the color depth and fastness of dyed natural fabric are poor. In this study, alkyl and hydroxyalkyl groups were grafted onto alizarin, which is a natural dye, to elevate the color depths and fastness of alizarin-derivative-dyed natural fabric. The results demonstrate that the color depths of alkyl-alizarin-dyed and hydroxyalkyl-alizarin-dyed natural fabrics were increased. This has to do with the increase in the solubilities of alkyl alizarin and hydroxyalkyl alizarin in SC-CO2. The hydroxybutyl-alizarin-dyed wool displayed the best color depth (K/S value: 6.44). And the hydroxyalkyl-alizarin-dyed natural fabric showed good washing fastness and rubbing fastness (about 4–5 level), because that hydroxyalkyl alizarin could be linked by a covalent bond to the natural fabric.


Hydroxyalkyl alizarin Alkyl alizarin Supercritical carbon dioxide Dyeing Natural fabric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China [grant number 21706021] and the National Natural Science Foundation of China [grant number 21606032].


  1. 1.
    T. T. Ma, Y. X. Cao, and H. L. Chen, Colloids Surf., A, 549, 43 (2018).CrossRefGoogle Scholar
  2. 2.
    T. M. Abou Elmaaty, F. M. El-Taweel, and H. G. Elsisi, Fiber. Polym., 19, 887 (2018).CrossRefGoogle Scholar
  3. 3.
    T. Abou Elmaaty and E. Abd El-Aziz, Text. Res. J., 88, 1184 (2018).CrossRefGoogle Scholar
  4. 4.
    A. Hou, B. Chen, J. Dai, and K. Zhang, J. Cleaner Prod., 18, 1009 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Cardozo-Filho, H. R. Mazzer, J. C. Santos, J. Andreaus, A. C. Feihrmann, C. Beninca, V. F. Cabral, and E. F. Zanoelo, Text. Res. J., 84, 1279 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Q. Zhang, X. C. Wei, and J. J. Long, J. Cleaner Prod., 133, 746 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Ding and H. S. Freeman, Color. Technol., 133, 369 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Sadeghi-Kiakhani, Int. J. Environ. Sci. Technol., 12, 2363 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Etemadifar, H. Dehghanizadeh, N. Nasirizadeh, and M. Rohani-Moghadam, Fiber. Polym., 15, 254 (2014).CrossRefGoogle Scholar
  10. 10.
    O. Deveoglu, B. Y. Sahinbaskan, E. Torgan, and R. Karadag, Color. Technol., 128, 364 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Farizadeh, M. E. Yazdanshenas, M. Montazer, R. M. A. Malek, and A. Rashidi, Text. Res. J., 80, 847 (2010).CrossRefGoogle Scholar
  12. 12.
    D. De Santis and M. Moresi, Ind. Crops Prod., 26, 151 (2007).CrossRefGoogle Scholar
  13. 13.
    Z. Zhu, L. Zheng, B. Du, J. Wei, Y. Qian, and J. Sui, Adv. Mater. Res. (Durnten-Zurich, Switz.), 821–822, 556 (2013).Google Scholar
  14. 14.
    B. Guzel and A. Akgerman, J. Supercrit. Fluid., 18, 247 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Liu, H. Zhao, J. Wu, X. Xiong, and L. Zheng, J. Cleaner Prod., 197, 1262 (2018).CrossRefGoogle Scholar
  16. 16.
    H. Zhao and S. Zhang, Color. Technol., 131, 218 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Tsukada, M. M. R. Khan, T. Miura, R. Postle, and A. Sakaguchi, Text. Res. J., 83, 1242 (2013).CrossRefGoogle Scholar
  18. 18.
    GB/T 3920-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Rubbing”, China National Standardization Management Committee, China, 2008.Google Scholar
  19. 19.
    GB/T 3921-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Washing with Soap or Soap and Soda”, China National Standardization Management Committee, China, 2008.Google Scholar
  20. 20.
    GB/T 12490-2007, “Textiles-Tests for Colour Fastnesscolour Fastness to Domestic and Commercial Laudering”, China National Standardization Management Committee, China, 2007.Google Scholar
  21. 21.
    GB/T 8427-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Artificial Light: Xenon Arc Fading Lamp Test”, China National Standardization Management Committee, China, 2008.Google Scholar
  22. 22.
    Z. Yoshida and F. Takabayashi, Tetrahedron, 24, 933 (1968).CrossRefGoogle Scholar
  23. 23.
    M. El Ezaby, T. Salem, A. Zewail, and R. Issa, J. Chem. Soc. B, 7, 1293 (1970).CrossRefGoogle Scholar
  24. 24.
    V. Sasirekha, P. Vanelle, T. Terme, and V. Ramakrishnan, J. Fluoresc., 19, 419 (2009).CrossRefGoogle Scholar
  25. 25.
    D. Tuma, B. Wagner, and G. M. Schneider, Fluid Phase Equilib., 182, 133 (2001).CrossRefGoogle Scholar
  26. 26.
    J. C. Pinto, F. Potié, K. C. Rice, D. Boring, M. R. Johnson, D. M. Evans, G. H. Wilken, C. H. Cantrell, and A. C. Howlett, Mol. Pharmacol., 46, 516 (1994).PubMedGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Liaoning Provincial Key Laboratory of Ecological TextileDalian Polytechnic UniversityDalianChina

Personalised recommendations