Fibers and Polymers

, Volume 20, Issue 1, pp 93–99 | Cite as

Electrospun Polyamide-6 Nanofiber Hybrid Membranes for Wastewater Treatment

  • Fatma YalcinkayaEmail author
  • Baturalp Yalcinkaya
  • Jakub Hruza


Electrospun nanofiber hybrid membranes have superior membrane performance due to their high specific surface area, narrow pore size, high porosity, and uniform pore size. Recently, increasing attention has been given to hydrophilic membranes such as polyamide 6 (PA6) in applications microfiltration and reverse osmosis. Electrospun PA6 nanofiber hybrid membranes have not found any real application due to their poor mechanical strength under high pressure. In this study, PA6 nanofiber layer was prepared using wire electrospinning method. Three supporting material with different adhesion method has been used to improve the mechanical properties of the membranes. Membranes were characterized with Scanning Electron Microscope images, pore size, and contact angle measurements. Tensile strength and the delamination tests were run to measure the mechanical properties of the membranes. Three types of wastewater were carried out during filtration; using real wastewater supplied from a company which consists of pitch and tar oils, engine oil/water mixture and kitchen oil/water mixture. Results indicated that the adhesion method and the supporting layer played a big role in the permeability of the membranes. The PA6 nanofiber hybrid membranes exhibited high water fluxes in even at low pressures which indicate that electrospun nanofiber membranes might be highly promising for microfiltration applications.


Wastewater Nanofiber Membrane selectivity Microfilter Polyamide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. C. Chong, E. Mahmoudi, Y. T. Chung, M. M. BaAbbad, C. H. Koo, and A. W. Mohammad, Desalin. Water Treat., 96, 12 (2017).CrossRefGoogle Scholar
  2. 2.
    L. Yan, Y. S. Li, and C. B. Xiang, Polymer (Guildf), 46, 7701 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Bottino, G. Capannelli, V. D’Asti, and P. Piaggio, Sep. Purif. Technol., 22-23, 269 (2001).CrossRefGoogle Scholar
  4. 4.
    W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, and Z. J. Jiang, Memb. Sci., 348, 75 (2010).CrossRefGoogle Scholar
  5. 5.
    K. Ebert, D. Fritsch, J. Koll, and C. J. Tjahjawiguna, Memb. Sci., 233, 71 (2004).CrossRefGoogle Scholar
  6. 6.
    G. Arthanareeswaran, T. Sriyamunadevi, and M. Raajenthiren, Sep. Purif. Technol., 64, 38 (2008).CrossRefGoogle Scholar
  7. 7.
    , S. Kuypers, and R. Leysen, J. Membr. Sci., 113, 343 (1996).CrossRefGoogle Scholar
  8. 8.
    Y. Ko, Y. Choi, Y. Jang, J. Choi, and S. Lee, Desalin. Water Treat., 97, 87 (2017).CrossRefGoogle Scholar
  9. 9.
    M. J. A. A.Shirazi, S. Bazgir, M. M. A. A.Shirazi, and S. Ramakrishna, Desalin. Water Treat., 51, 5974 (2013).CrossRefGoogle Scholar
  10. 10.
    D. Bjorge, N. Daels, S. De Vrieze, P. Dejans, T. Van Camp, W. Audenaert, J. Hogie, P. Westbroek, K. De Clerck, and S. W. H. Van Hulle, Desalination, 249, 942 (2009).Google Scholar
  11. 11.
    F. Yalcinkaya and J. Hruza, J. Nanomaterials, 8, 272 (2018).CrossRefGoogle Scholar
  12. 12.
    B. Yalcinkaya, F. Yalcinkaya, and J. Chaloupek, J. Nanomater., Article No. 2694373, 2016 (2016).Google Scholar
  13. 13.
    F. Yalcinkaya, Arab.J. Chem., doi:10.1016/j.arabjc.2016.12.012 (2016).Google Scholar
  14. 14.
    B. Yalcinkaya, F. Yalcinkaya, and J. Chaloupek, Desalin. Water Treat., 59, 19 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Aiba, K. Ito, T. Tokuyama, H. Tomioka, T. Higashihara, M. Ueda, and H. Matsumoto, Macromol. Chem. Phys., 219, 1 (2018).Google Scholar
  16. 16.
    S. Konagaya and M. Tokai, J. Appl. Polym. Sci., 76, 913 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Meier-Haack, M. Valko, K. Lunkwitz, and M. Bleha, Desalination, 163, 215 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Wu, J. Adhes., 5, 39 (1973).CrossRefGoogle Scholar
  19. 19.
    A. Ahagon and A. N. Gent, J. Polym. Sci. Polym. Phys. Ed., 7, 1285 (1975).CrossRefGoogle Scholar
  20. 20.
    E. Helfand and Y. J. Tagami, Chem. Phys., 56, 3592 (1971).Google Scholar
  21. 21.
    B. V. Derjaguin, N. A. Krotova, V. V. Karassev, Y. M. Kirillova, and I. N. Aleinikova, Prog. Surf. Sci., 45, 95 (1994).CrossRefGoogle Scholar
  22. 22.
    H. W. Kammer, Acta Polym., 34, 112 (1983).CrossRefGoogle Scholar
  23. 23.
    A. Kinloch, “Adhesion and Adhesives: Science and Technology”, p.18, Springer Netherlands: Dordrecht, 1987.CrossRefGoogle Scholar
  24. 24.
    Y. Zhu, D. Wang, L. Jiang, and J. Jin, NPG Asia Mater., Article No. e101, 6 (2014).Google Scholar
  25. 25.
    K.-H. Choo and C.-H. Lee, J. Colloid Interface Sci., 226, 367 (2000).CrossRefGoogle Scholar
  26. 26.
    F. Y. Guo, P. C. Sun, and J. F. Wei, Environ. Technol. (United Kingdom), 39, 3159 (2018).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Fatma Yalcinkaya
    • 1
    • 2
    Email author
  • Baturalp Yalcinkaya
    • 1
  • Jakub Hruza
    • 1
    • 2
  1. 1.Department of Nanotechnology and Informatics, Institute of Nanomaterials, Advanced Technologies and InnovationTechnical University of LiberecLiberecCzech Republic
  2. 2.Institute for New Technologies and Applied Informatics, Faculty of MechatronicsTechnical University of LiberecLiberecCzech Republic

Personalised recommendations