Advertisement

Fibers and Polymers

, Volume 20, Issue 1, pp 191–198 | Cite as

Influence of Punching Parameters on Fibre Orientation and Related Physical and Mechanical Properties of Needle Punched Nonwoven

  • Rupayan RoyEmail author
  • S. M. Ishtiaque
Article
  • 31 Downloads

Abstract

In this research work, the authors have investigated the needling effect on a non-woven prepared form the webs of equal basis weight. Punch density, needle penetration depth and strokes per minute are taken as variables. Initially, it was observed that the punching parameters were influencing the fibre orientation to a great extent. Subsequently, other properties were taken into study. It was found that higher punch density and penetration depth spreading the web in its cross direction, as a result, the basis weight and thickness reducing in a great extent and other properties like basis weight, tensile strength got affected. Secondly, with the change of stroke frequency, the width of the web, as well as nonwoven, also changed due to the spreading towards the cross direction. It was found that when strokes per min increased, the basis weight thickness decreased as well as other properties got affected.

Keywords

Tracer fibre technique Punching parameters Fibre breakage Orientation Basis weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ciach and L. Gradon, J. Aerosol. Sci., 29, 935 (1998).CrossRefGoogle Scholar
  2. 2.
    A. Lisowski, E. Lisowski, and A. Thorpe, Powder Technol., 118, 149 (2001).CrossRefGoogle Scholar
  3. 3.
    B. Pourdeyhimi, R. Ramanathan, and R. Dent, Text. Res. J., 66, 713 (1996).CrossRefGoogle Scholar
  4. 4.
    B. Xu and Y. L. Ting, Text. Res. J., 65, 41 (1995).CrossRefGoogle Scholar
  5. 5.
    J. W. S.S. Hearle and P. J. Stevenson, Text. Res. J., 33, 877 (1963).CrossRefGoogle Scholar
  6. 6.
    J. W. S.S. Hearle and P. J. Stevenson, Text. Res. J., 34, 181 (1964).CrossRefGoogle Scholar
  7. 7.
    A. A. Jeddi, H. S. Kim, and B. Pourdeyhimi, Nonwovens Int. J., 3, 12 (2001).Google Scholar
  8. 8.
    B. Pourdeyhimi, R. Ramanathan, and R. Dent, Text. Res. J., 67, 143 (1997).CrossRefGoogle Scholar
  9. 9.
    B. Pourdeyhimi, R. Ramanathan, and R. Dent, Text. Res. J., 66, 747 (1996).CrossRefGoogle Scholar
  10. 10.
    B. Neckář and D. Das, J. Text. Inst., 103, 330 (2012).Google Scholar
  11. 11.
    V. K. Kothari, A. Das, and A. Sarkar, Ind. J. Fibre Text. Res., 32, 196 (2007).Google Scholar
  12. 12.
    R. D. Anandjiwala and L. Boguslavsky, Text. Res. J., 78, 614 (2008).CrossRefGoogle Scholar
  13. 13.
    H. S. Lee and T. J. Kung, J. Compos. Mater., 34, 816 (2000).CrossRefGoogle Scholar
  14. 14.
    S. M. Ishtiaque and R. Roy, Indian J. Fibre Text. Res., Article no. IJFTR-2461 (2018).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Textile TechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations