Fibers and Polymers

, Volume 20, Issue 1, pp 1–10 | Cite as

Enhanced Structural Stability and Controlled Drug Release of Hydrophilic Antibiotic-Loaded Alginate/Soy Protein Isolate Core-Sheath Fibers for Tissue Engineering Applications

  • Piyachat Chuysinuan
  • Chalinan Pengsuk
  • Kriengsak Lirdprapamongkol
  • Supanna Techasakul
  • Jisnuson Svasti
  • Patcharakamon NooeaidEmail author


Tissue engineering involves a multifunctional temporary matrix which regulates tissue regeneration through controlled drug release against infections. A nanofibrous core-sheath structured scaffold comprising a tetracycline-loaded alginate/soy protein isolate (TCH-Alg/SPI) as a core and polycaprolactone (PCL) as a sheath was developed using co-axial electrospinning. Coverage of hydrophobic PCL on TCH-Alg/SPI fibers enhanced their structural stability in aqueous solutions as unsheathed fibers rapidly decomposed and provided fast drug release. Core-sheath fibers exhibited an initial burst release at ~49 % after 6 h of immersion in phosphate-buffered saline (PBS) solution and the sustain release reached ~80 % of total loaded drug on day 14. Release characteristics of TCH-Alg/SPI fibers without PCL covering showed immediate drug release within 48 h. Core-sheath fibers investigated by disk diffusion exhibited antibacterial properties against Staphylococcus aureus and Escherichia coli. The non-toxicity of core-sheath fibers was confirmed by an indirect cytotoxicity test using human dermal fibroblasts which showed compatibility and high cell viability of up to 100 % in treated cells. TCH-Alg/SPI-PCL core-sheath fibers show promise as tissue engineering scaffolds which can act as temporary templates for tissue regeneration and exhibit antibiotic release functions against infections caused by pathogenic microorganisms.


Core-sheath fibers Co-axial electrospinning Drug release Tissue engineering Antibacterial property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Vogt, L. Liverani, J. A. Roether, and A. R. Boccaccini, Nanomaterials, 8, 150 (2018).CrossRefGoogle Scholar
  2. 2.
    L. E. Sperling, K. P. Reis, P. Pranke, and J. H. Wendorff, Drug Discov. Today, 21, 1243 (2016).CrossRefGoogle Scholar
  3. 3.
    A. K. Gaharwar, S. M. Mihaila, A. A. Kulkarni, A. Patel, A. Di Luca, R. L. Reis, M. E. Gomes, C. Van Blitterswijk, L. Moroni, and A. Khademhosseini, J. Control. Release, 187, 66 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Venugopal, M. P. Prabhakaran, Y. Zhang, S. Low, A. T. Choon, and S. Ramakrishna, Philos. Trans. A. Math. Phys. Eng. Sci., 368, 2065 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Venugopal, S. Low, A. T. Choon, and S. Ramakrishna, J. Biomed. Mater. Res. Part B: Appl. Biomater., 84, 34 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Stratton, N. B. Shelke, K. Hoshino, S. Rudraiah, and S. G. Kumbar, Bioact. Mater., 1, 93 (2016).CrossRefGoogle Scholar
  7. 7.
    L. Francis, D. Meng, J. C. Knowles, I. Roy, and A. R. Boccaccini, Acta Biomater., 6, 2773 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Olalde, N. Garmendia, V. Sáez-Martínez, N. Argarate, P. Nooeaid, F. Morin, and A. R. Boccaccini, Mater. Sci. Eng. C. Mater. Biol. Appl., 33, 3760 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Cao, Y.-P. Wu, Z. F. Fu, Y. Tian, C.-J. Li, C. Y. Gao, Z.-L. Chen, and X.-Z. Feng, Colloids Surf._B. Biointerfaces, 84, 26 (2011).CrossRefGoogle Scholar
  10. 10.
    F. T. Moutos, B. T. Estes, and F. Guilak, Macromol. Biosci., 10, 1355 (2010).CrossRefGoogle Scholar
  11. 11.
    L. L. Del Mercato, L. G. Passione, D. Izzo, R. Rinaldi, A. Sannino, and F. Gervaso, J. Mech. Behav. Biomed. Mater., 62, 209 (2016).CrossRefGoogle Scholar
  12. 12.
    R. A. Perez and H. W. Kim, Acta Biomater., 21, 2 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Szentivanyi, T. Chakradeo, H. Zernetsch, and B. Glasmacher, Adv. Drug Deliv. Rev., 63, 209 (2011).CrossRefGoogle Scholar
  14. 14.
    D.-G. Yu, J.-J. Li, G. R. Williams, and M. Zhao, J. Control. Release, 292, 91 (2018).CrossRefGoogle Scholar
  15. 15.
    H. Yu, Y. Jia, C. Yao, and Y. Lu, Int._J. Pharm., 469, 17 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Maleki, M. Amani-Tehran, M. Latifi, and S. Mathur, Comput. Methods Programs Biomed., 113, 92 (2014).CrossRefGoogle Scholar
  17. 17.
    J. J. Li, Y. Y. Yang, D. G. Yu, Q. Du, and X. L. Yang, Eur. J. Pharm. Sci., 122, 195 (2018).CrossRefGoogle Scholar
  18. 18.
    K. Wang, X. K. Liu, X. H. Chen, D. G. Yu, Y. Y. Yang, and P. Liu, ACS Appl. Mater. Interfaces, 10, 2859 (2018).CrossRefGoogle Scholar
  19. 19.
    X. Xu, W. Zhong, S. Zhou, A. Trajtman, and M. Alfa, J. Appl. Polym. Sci., 118, 588 (2010).CrossRefGoogle Scholar
  20. 20.
    Q. Yao, P. Nooeaid, J. A. Roether, Y. Dong, Q. Zhang, and A. R. Boccaccini, Ceram. Int., 39, 7517 (2013).CrossRefGoogle Scholar
  21. 21.
    A. Shukla, J. C. Fang, S. Puranam, and P. T. Hammond, J. Control. Release, 157, 64 (2012).CrossRefGoogle Scholar
  22. 22.
    K. Ren, Y. Wang, T. Sun, W. Yue, and H. Zhang, Mater. Sci. Eng. C. Mater. Biol. Appl., 78, 324 (2017).CrossRefGoogle Scholar
  23. 23.
    A. A. Nada, R. A. Abdelazeem, A. H. Elghandour, and N. Y. Abou-Zeid, J. Drug Deliv. Sci. Technol., 44, 482 (2018).CrossRefGoogle Scholar
  24. 24.
    R. Wongkanya, P. Chuysinuan, C. Pengsuk, S. Techasakul, K. Lirdprapamongkol, J. Svasti, and P. Nooeaid, J. Sci. Adv. Mater. Devices., 2, 309 (2017).CrossRefGoogle Scholar
  25. 25.
    C. Yang, D. G. Yu, D. Pan, X. K. Liu, X. Wang, S. W. A. A.Bligh, and G. R. Williams, Acta Biomater., 35, 77 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Y. Yang, Z. P. Liu, D. G. Yu, K. Wang, P. Liu, and X. Chen, Int._J. Nanomedicine, 13, 2395 (2018).CrossRefGoogle Scholar
  27. 27.
    D. H. Choi, C. H. Park, I. H. Kim, H. J. Chun, K. Park, and D. K. Han, J. Control. Release, 147, 193 (2010).CrossRefGoogle Scholar
  28. 28.
    G. Ma, D. Fang, Y. Liu, X. Zhu, and J. Nie, Carbohydr. Polym., 87, 737 (2012).CrossRefGoogle Scholar
  29. 29.
    H. Ma, G. Chen, J. Zhang, Y. Liu, J. Nie, and G. Ma, Polymer, 110, 80 (2017).CrossRefGoogle Scholar
  30. 30.
    A. Ergun, X. Yu, A. Valdevit, A. Ritter, and D. M. Kalyon, J. Biomed. Mater. Res. A, 99, 354 (2011).CrossRefGoogle Scholar
  31. 31.
    W.-J. Li, J. A. Cooper, R. L. Mauck, and R. S. Tuan, Acta Biomater., 2, 377 (2006).CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, J. Biomed. Mater. Res. B. Appl. Biomater., 72, 156 (2005).CrossRefGoogle Scholar
  33. 33.
    S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Poly. Pharm., 67, 217 (2010).Google Scholar
  34. 34.
    P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 23 (1987).CrossRefGoogle Scholar
  35. 35.
    H. Olami, I. Berdicevsky, and M. Zilberman, Adv. Biomater. Devices Med., 2, 23 (2015).Google Scholar
  36. 36.
    K. Ma, A. L. Titan, M. Stafford, Ch. Zheng, and M. E. Levenston, Acta Biomater., 8, 3754 (2012).CrossRefGoogle Scholar
  37. 37.
    K. Sombatmankhong, N. Sanchavanakit, P. Pavasant, and P. Supaphol, Polymer, 48, 1419 (2007).CrossRefGoogle Scholar
  38. 38.
    R. Silva, R. Singh, B. Sarker, D. G. Papageorgiou, J. A. Juhasz, J. A. Roether, I. Cicha, J. Kaschta, D. W. Schubert, K. Chrissafis, R. Detsch, and A. R. Boccaccini, Int. J. Biol. Macromol., 93, 1420 (2016).CrossRefGoogle Scholar
  39. 39.
    S. S. Silva and R. L. Reis, Carbohydr. Polym., 70, 25 (2007).CrossRefGoogle Scholar
  40. 40.
    W. Shao, H. Liu, S. Wang, J. Wu, M. Huang, H. Min, and X. Liu, Carbohydr. Polym., 145, 114 (2016).CrossRefGoogle Scholar
  41. 41.
    G. Singhvi and M. Singh, Int. J. Pharm. Stud. Res., 2, 77 (2011).Google Scholar
  42. 42.
    S. K. Prajapati, R. Richhaiya, V. K. Singh, A. K. Singh, S. Kumar, and R. K. Chaudhary, J. Drug Deliv. Ther., 2, 16 (2012).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Piyachat Chuysinuan
    • 1
  • Chalinan Pengsuk
    • 2
  • Kriengsak Lirdprapamongkol
    • 3
  • Supanna Techasakul
    • 1
  • Jisnuson Svasti
    • 3
  • Patcharakamon Nooeaid
    • 4
    Email author
  1. 1.Laboratory of Organic SynthesisChulabhorn Research InstituteBangkokThailand
  2. 2.Division of Biotechnology and Agricultural Products, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityNakhon-NayokThailand
  3. 3.Laboratory of BiochemistryChulabhorn Research InstituteBangkokThailand
  4. 4.Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityNakhon-NayokThailand

Personalised recommendations